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On 29th Dec 2011 (3.6M pp. 386)

� Add two figures explain the maximum Mach number limits in the shock tube.

� English and typo corrections.

Version 0.4.8.7

On 29th Dec 2011 (3.6M pp. 386)

� Significantly improved the shock tube section.

� Improvements of the structure to meed to the standard.

� English and typo corrections.

Version 0.4.8.6

On 23rd Oct 2009 (3.6M pp. 384)

� Add the section about Theodor Meyer’s biography

� Addition of Temperature Velocity diagram. (The addition to the other chapters
was not added yet).

Version 0.4.8.5b

On 07th Sep 2009 (3.5M pp. 376)

� Corrections in the Fanno chapter in Trends section.

� English corrections.

Version 0.4.8.5a

On 04th July 2009 (3.5M pp. 376)

� Corrections in the thermodynamics chapter to the gases properties table.

� English corrections.

� Improve the multilayer sound traveling example (Heru’s suggestion)
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Version 0.4.8.5a

On 04th July 2009 (3.3M pp. 380)

� Correction to the gases properties table (Michael Madden and Heru Reksoprodjo)

� English corrections.

� Improving the multilayer sound wave traveling

Version 0.4.8.5

On 14th January 2009 (3.3M pp. 380)

� Improve images macro (two captions issue).

� English corrections.

Version 0.4.8.5rc

On 31st December 2008 (3.3M pp. 380)

� Add Gary Settles’s color image in wedge shock and an example.

� Improve the wrap figure issue to oblique shock.

� Add Moody diagram to Fanno flow.

� English corrections to the oblique shock chapter.

Version 0.4.8.4

On 7th October 2008 (3.2M pp. 376)

� More work on the nomenclature issue.

� Important equations and useful equations issues inserted.

� Expand the discussion on the friction factor in isothermal and fanno flow.

Version 0.4.8.3

On 17th September 2008 (3.1M pp. 369)

� Started the nomenclature issue so far only the thermodynamics chapter.

� Started the important equations and useful equations issue.

� Add the introduction to thermodynamics chapter.

� Add the discussion on the friction factor in isothermal and fanno flow.
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Version 0.4.8.2

On 25th January 2008 (3.1M pp. 353)

� Add several additions to the isentropic flow, normal shock,

� Rayleigh Flow.

� Improve some examples.

� More changes to the script to generate separate chapters sections.

� Add new macros to work better so that php and pdf version will be similar.

� More English revisions.

Version 0.4.8

November-05-2007

� Add the new unchoked subsonic Fanno Flow section which include the “unknown”
diameter question.

� Shock (Wave) drag explanation with example.

� Some examples were add and fixing other examples (small perturbations of oblique
shock).

� Minor English revisions.

Version 0.4.4.3pr1

July-10-2007

� Improvement of the pdf version provide links.

Version 0.4.4.2a

July-4-2007 version

� Major English revisions in Rayleigh Flow Chapter.

� Continue the improvement of the HTML version (imageonly issues).

� Minor content changes and addition of an example.
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Version 0.4.4.2

May-22-2007 version

� Major English revisions.

� Continue the improvement of the HTML version.

� Minor content change and addition of an example.

Version 0.4.4.1

Feb-21-2007 version

� Include the indexes subjects and authors.

� Continue the improve the HTML version.

� solve problems with some of the figures location (float problems)

� Improve some spelling and grammar.

� Minor content change and addition of an example.

� The main change is the inclusion of the indexes (subject and authors). There were
some additions to the content which include an example. The ”naughty professor’s
questions” section isn’t completed and is waiting for interface of Potto-GDC to
be finished (engine is finished, hopefully next two weeks). Some grammar and
misspelling corrections were added.

Now include a script that append a title page to every pdf fraction of the book
(it was fun to solve this one). Continue to insert the changes (log) to every
source file (latex) of the book when applicable. This change allows to follow the
progression of the book. Most the tables now have the double formatting one for
the html and one for the hard copies.

Version 0.4.4pr1

Jan-16-2007 version

� Major modifications of the source to improve the HTML version.

� Add the naughty professor’s questions in the isentropic chapter.

� Some grammar and miss spelling corrections.
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Version 0.4.3.2rc1

Dec-04-2006 version

� Add new algorithm for Fanno Flow calculation of the shock location in the super-
sonic flow for given fld (exceeding Max) and M1 (see the example).

� Minor addition in the Sound and History chapters.

� Add analytical expression for Mach number results of piston movement.

Version 0.4.3.1rc4 aka 0.4.3.1

Nov-10-2006 aka Roy Tate’s version

For this release (the vast majority) of the grammatical corrections are due to Roy Tate

� Grammatical corrections through the history chapter and part of the sound chap-
ter.

� Very minor addition in the Isothermal chapter about supersonic branch.

Version 0.4.3.1rc3

Oct-30-2006

� Add the solutions to last three examples in Chapter Normal Shock in variable
area.

� Improve the discussion about partial open and close moving shock dynamics i.e.
high speed running into slower velocity

� Clean other tables and figure and layout.

Version 0.4.3rc2

Oct-20-2006

� Clean up of the isentropic and sound chapters

� Add discussion about partial open and close moving shock dynamics i.e. high
speed running into slower velocity.

� Add the partial moving shock figures (never published before)
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Version 0.4.3rc1

Sep-20-2006

� Change the book’s format to 6x9 from letter paper

� Clean up of the isentropic chapter.

� Add the shock tube section

� Generalize the discussion of the the moving shock (not including the change in
the specific heat (material))

� Add the Impulse Function for Isothermal Nozzle section

� Improve the discussion of the Fliegner’s equation

� Add the moving shock table (never published before)

Version 0.4.1.9 (aka 0.4.1.9rc2)

May-22-2006

� Added the Impulse Function

� Add two examples.

� Clean some discussions issues .

Version 0.4.1.9rc1

May-17-2006

� Added mathematical description of Prandtl-Meyer’s Function

� Fixed several examples in oblique shock chapter

� Add three examples.

� Clean some discussions issues .

Version 0.4.1.8 aka Version 0.4.1.8rc3

May-03-2006

� Added Chapman’s function

� Fixed several examples in oblique shock chapter

� Add two examples.

� Clean some discussions issues .
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Version 0.4.1.8rc2

Apr-11-2006

� Added the Maximum Deflection Mach number’s equation

� Added several examples to oblique shock
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Notice of Copyright For This Book:

This document published Modified FDL. The change of the license is to prevent from
situations where the author has to buy his own book. The Potto Project License isn’t
long apply to this document and associated documents.

GNU Free Documentation License

The modification is that under section 3 “copying in quantity” should be add in the
end.

”If you print more than 200 copies, you are required to furnish the author with two (2)
copies of the printed book. This part is major part of this license.”

Version 1.2, November 2002
Copyright ©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document ”free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, either com-
mercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.
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This License is a kind of ”copyleft”, which means that derivative works of
the document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The ”Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as ”you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or authors of
the Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the Doc-
ument is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may con-
tain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document
is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
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translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount of text. A copy
that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page as such,
”Title Page” means the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that trans-
lates XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”His-
tory”.) To ”Preserve the Title” of such a section when you modify the Document
means that it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. You may
not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY
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If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly,
all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.
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D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled ”History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
”History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document, you
may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
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You may add a section Entitled ”Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example, statements
of peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work
in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections Entitled ”History” in the
various original documents, forming one section Entitled ”History”; likewise combine
any sections Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”.
You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution medium,
is called an ”aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”,
or ”History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify, sublicense
or distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or any later
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version” applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft)
by the Free Software Foundation. If the Document does not specify a version number
of this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just after
the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.
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How to contribute to this book

As a copylefted work, this book is open to revision and expansion by any interested
parties. The only ”catch” is that credit must be given where credit is due. This is a
copyrighted work: it is not in the public domain!

If you wish to cite portions of this book in a work of your own, you must
follow the same guidelines as for any other GDL copyrighted work.

Credits

All entries arranged in alphabetical order of surname. Major contributions are listed by
individual name with some detail on the nature of the contribution(s), date, contact
info, etc. Minor contributions (typo corrections, etc.) are listed by name only for
reasons of brevity. Please understand that when I classify a contribution as ”minor,”
it is in no way inferior to the effort or value of a ”major” contribution, just smaller in
the sense of less text changed. Any and all contributions are gratefully accepted. I am
indebted to all those who have given freely of their own knowledge, time, and resources
to make this a better book!

� Date(s) of contribution(s): 2004 to present

� Nature of contribution: Original author.

� Contact at: barmeir at gmail.com

John Martones

� Date(s) of contribution(s): June 2005
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� Nature of contribution: HTML formatting, some error corrections.

Grigory Toker

� Date(s) of contribution(s): August 2005

� Nature of contribution: Provided pictures of the oblique shock for oblique shock
chapter.

Ralph Menikoff

� Date(s) of contribution(s): July 2005

� Nature of contribution: Some discussions about the solution to oblique shock
and about the Maximum Deflection of the oblique shock.

Domitien Rataaforret

� Date(s) of contribution(s): Oct 2006

� Nature of contribution: Some discussions about the French problem and help
with the new wrapImg command.

Gary Settles

� Date(s) of contribution(s): Dec 2008, July 2009

� Nature of contribution: Four images for oblique shock two dimensional, and
cone flow.

� Nature of contribution: Information about T. Meyer –2009.

Your name here

� Date(s) of contribution(s): Month and year of contribution

� Nature of contribution: Insert text here, describing how you contributed to the
book.

� Contact at: my email@provider.net
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Typo corrections and other ”minor” contributions

� H. Gohrah, Ph. D., September 2005, some LaTeX issues.

� Roy Tate November 2006, Suggestions on improving English and grammar.

� Nancy Cohen 2006, Suggestions on improving English and style for various issues.

� Irene Tan 2006, proof reading many chapters and for various other issues.

� Michael Madden 2009, gas properties table corrections

� Heru Reksoprodjo 2009, point to affecting dimensional parameter in multi layer
sound travel, and also point to the mistake in the gas properties.

� Raghvendra Gupta, Ph. D., Nov 2013, Correction of example 5.1.
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About This Author

Genick Bar-Meir holds a Ph.D. in Mechanical Engineering from University of Minnesota
and a Master in Fluid Mechanics from Tel Aviv University. Dr. Bar-Meir was the last
student of the late Dr. R.G.E. Eckert. Much of his time has been spend doing research
in the field of heat and mass transfer (related to renewal energy issues) and this includes
fluid mechanics related to manufacturing processes and design. Currently, he spends
time writing books (there are already three very popular books) and softwares for the
POTTO project (see Potto Prologue). The author enjoys to encourage his students to
understand the material beyond the basic requirements of exams.

In his early part of his professional life, Bar-Meir was mainly interested in
elegant models whether they have or not a practical applicability. Now, this author’s
views had changed and the virtue of the practical part of any model becomes the
essential part of his ideas, books and software.

He developed models for Mass Transfer in high concentration that became a
building blocks for many other models. These models are based on analytical solution to
a family of equations1. As the change in the view occurred, Bar-Meir developed models
that explained several manufacturing processes such the rapid evacuation of gas from
containers, the critical piston velocity in a partially filled chamber (related to hydraulic
jump), application of supply and demand to rapid change power system and etc. All
the models have practical applicability. These models have been extended by several
research groups (needless to say with large research grants). For example, the Spanish
Comision Interministerial provides grants TAP97-0489 and PB98-0007, and the CICYT
and the European Commission provides 1FD97-2333 grants for minor aspects of that
models. Moreover, the author’s models were used in numerical works, in GM, British
industry, Spain, and Canada.

In the area of compressible flow, it was commonly believed and taught that
there is only weak and strong shock and it is continue by Prandtl–Meyer function. Bar–

1Where the mathematicians were able only to prove that the solution exists.
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Meir discovered the analytical solution for oblique shock and showed that there is a quiet
buffer between the oblique shock and Prandtl–Meyer. He also build analytical solution
to several moving shock cases. He described and categorized the filling and evacuating
of chamber by compressible fluid in which he also found analytical solutions to cases
where the working fluid was ideal gas. The common explanation to Prandtl–Meyer
function shows that flow can turn in a sharp corner. Engineers have constructed design
that based on this conclusion. Bar-Meir demonstrated that common Prandtl–Meyer
explanation violates the conservation of mass and therefor the turn must be around a
finite radius. The author’s explanations on missing diameter and other issues in fanno
flow and “naughty professor’s question” are used in the industry.

In his book “Basics of Fluid Mechanics”, Bar-Meir demonstrated several
things which include Pushka equation, dealing with the pressure accounted the slight
compressibility (a finite Bulk Modulus effect), speed of sound in slightly compressible
liquid. He showed the relationship between the wavy surface and the multi–phases flow.

The author lives with his wife and three children. A past project of his was
building a four stories house, practically from scratch. While he writes his programs and
does other computer chores, he often feels clueless about computers and programing.
While he is known to look like he knows a lot a lot about many things, the author just
know to learn quickly. The author spent years working on the sea (ships) as a engine
sea officer but now the author prefers to remain on a solid ground.



Prologue For The POTTO Project

This books series was born out of frustrations in two respects. The first issue is the
enormous price of college textbooks. It is unacceptable that the price of the college
books will be over $150 per book (over 10 hours of work for an average student in The
United States).

The second issue that prompted the writing of this book is the fact that we
as the public have to deal with a corrupted judicial system. As individuals we have to
obey the law, particularly the copyright law with the “infinite2” time with the copyright
holders. However, when applied to “small” individuals who are not able to hire a large
legal firm, judges simply manufacture facts to make the little guy lose and pay for the
defense of his work. On one hand, the corrupted court system defends the “big” guys
and on the other hand, punishes the small “entrepreneur” who tries to defend his or her
work. It has become very clear to the author and founder of the POTTO Project that
this situation must be stopped. Hence, the creation of the POTTO Project. As R. Kook,
one of this author’s sages, said instead of whining about arrogance and incorrectness,
one should increase wisdom. This project is to increase wisdom and humility.

The POTTO Project has far greater goals than simply correcting an abusive
Judicial system or simply exposing abusive judges. It is apparent that writing textbooks
especially for college students as a cooperation, like an open source, is a new idea3.
Writing a book in the technical field is not the same as writing a novel. The writing
of a technical book is really a collection of information and practice. There is always
someone who can add to the book. The study of technical material isn’t only done by
having to memorize the material, but also by coming to understand and be able to solve

2After the last decision of the Supreme Court in the case of Eldred v. Ashcroff (see
http://cyber.law.harvard.edu/openlaw/eldredvashcroft for more information) copyrights prac-
tically remain indefinitely with the holder (not the creator).

3In some sense one can view the encyclopedia Wikipedia as an open content project (see
http://en.wikipedia.org/wiki/Main Page). The wikipedia is an excellent collection of articles which
are written by various individuals.

xlv



xlvi LIST OF TABLES

related problems. The author has not found any technique that is more useful for this
purpose than practicing the solving of problems and exercises. One can be successful
when one solves as many problems as possible. To reach this possibility the collective
book idea was created/adapted. While one can be as creative as possible, there are
always others who can see new aspects of or add to the material. The collective material
is much richer than any single person can create by himself.

The following example explains this point: The army ant is a kind of car-
nivorous ant that lives and hunts in the tropics, hunting animals that are even up to
a hundred kilograms in weight. The secret of the ants’ power lies in their collective
intelligence. While a single ant is not intelligent enough to attack and hunt large prey,
the collective power of their networking creates an extremely powerful intelligence to
carry out this attack4. When an insect which is blind can be so powerful by networking,
So can we in creating textbooks by this powerful tool.

Why would someone volunteer to be an author or organizer of such a book?
This is the first question the undersigned was asked. The answer varies from individual
to individual. It is hoped that because of the open nature of these books, they will
become the most popular books and the most read books in their respected field. For
example, the books on compressible flow and die casting became the most popular
books in their respective area. In a way, the popularity of the books should be one of
the incentives for potential contributors. The desire to be an author of a well–known
book (at least in his/her profession) will convince some to put forth the effort. For
some authors, the reason is the pure fun of writing and organizing educational material.
Experience has shown that in explaining to others any given subject, one also begins
to better understand the material. Thus, contributing to these books will help one
to understand the material better. For others, the writing of or contributing to this
kind of books will serve as a social function. The social function can have at least
two components. One component is to come to know and socialize with many in the
profession. For others the social part is as simple as a desire to reduce the price of
college textbooks, especially for family members or relatives and those students lacking
funds. For some contributors/authors, in the course of their teaching they have found
that the textbook they were using contains sections that can be improved or that are not
as good as their own notes. In these cases, they now have an opportunity to put their
notes to use for others. Whatever the reasons, the undersigned believes that personal
intentions are appropriate and are the author’s/organizer’s private affair.

If a contributor of a section in such a book can be easily identified, then
that contributor will be the copyright holder of that specific section (even within ques-
tion/answer sections). The book’s contributor’s names could be written by their sec-
tions. It is not just for experts to contribute, but also students who happened to be
doing their homework. The student’s contributions can be done by adding a question
and perhaps the solution. Thus, this method is expected to accelerate the creation of
these high quality books.

These books are written in a similar manner to the open source software

4see also in Franks, Nigel R.; ”Army Ants: A Collective Intelligence,” American Scientist, 77:139,
1989 (see for information http://www.ex.ac.uk/bugclub/raiders.html)
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process. Someone has to write the skeleton and hopefully others will add “flesh and
skin.” In this process, chapters or sections can be added after the skeleton has been
written. It is also hoped that others will contribute to the question and answer sections
in the book. But more than that, other books contain data5 which can be typeset in
LATEX. These data (tables, graphs and etc.) can be redone by anyone who has the time
to do it. Thus, the contributions to books can be done by many who are not experts.
Additionally, contributions can be made from any part of the world by those who wish
to translate the book.

It is hoped that the books will be error-free. Nevertheless, some errors are
possible and expected. Even if not complete, better discussions or better explanations
are all welcome to these books. These books are intended to be “continuous” in the
sense that there will be someone who will maintain and improve the books with time
(the organizer(s)).

These books should be considered more as a project than to fit the traditional
definition of “plain” books. Thus, the traditional role of author will be replaced by an
organizer who will be the one to compile the book. The organizer of the book in some
instances will be the main author of the work, while in other cases only the gate keeper.
This may merely be the person who decides what will go into the book and what will not
(gate keeper). Unlike a regular book, these works will have a version number because
they are alive and continuously evolving.

The undersigned of this document intends to be the organizer–author–coordinator
of the projects in the following areas:

Table -1. Books under development in Potto project.

Project
Name Pro

gr
es

s
Remarks Version

Availability
for
Public
Download

N
u

m
b

er
D

ow
n

L
oa

d
s

Compressible Flow beta 0.4.8.4 4 120,000
Die Casting alpha 0.1 4 60,000
Dynamics NSY 0.0.0 6 -
Fluid Mechanics alpha 0.1.8 4 15,000
Heat Transfer NSY Based

on
Eckert

0.0.0 6 -

Mechanics NSY 0.0.0 6 -
Open Channel Flow NSY 0.0.0 6 -
Statics early

alpha
first
chapter

0.0.1 6 -

Strength of Material NSY 0.0.0 6 -

5 Data are not copyrighted.
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Table -1. Books under development in Potto project. (continue)

Project
Name Pro

gr
es

s
Remarks Version

Availability
for
Public
Download

N
u

m
b

er
D

ow
n

L
oa

d
s

Thermodynamics early
alpha

0.0.01 6 -

Two/Multi phases
flow

NSY Tel-
Aviv’notes

0.0.0 6 -

NSY = Not Started Yet
The meaning of the progress is as:

� The Alpha Stage is when some of the chapters are already in a rough draft;

� in Beta Stage is when all or almost all of the chapters have been written and are
at least in a draft stage;

� in Gamma Stage is when all the chapters are written and some of the chapters
are in a mature form; and

� the Advanced Stage is when all of the basic material is written and all that is left
are aspects that are active, advanced topics, and special cases.

The mature stage of a chapter is when all or nearly all the sections are in a mature
stage and have a mature bibliography as well as numerous examples for every section.
The mature stage of a section is when all of the topics in the section are written, and
all of the examples and data (tables, figures, etc.) are already presented. While some
terms are defined in a relatively clear fashion, other definitions give merely a hint on
the status. But such a thing is hard to define and should be enough for this stage.

The idea that a book can be created as a project has mushroomed from the
open source software concept, but it has roots in the way science progresses. However,
traditionally books have been improved by the same author(s), a process in which books
have a new version every a few years. There are book(s) that have continued after their
author passed away, i.e., the Boundary Layer Theory originated6 by Hermann Schlichting
but continues to this day. However, projects such as the Linux Documentation project
demonstrated that books can be written as the cooperative effort of many individuals,
many of whom volunteered to help.

Writing a textbook is comprised of many aspects, which include the actual
writing of the text, writing examples, creating diagrams and figures, and writing the

6Originally authored by Dr. Schlichting, who passed way some years ago. A new version is created
every several years.
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LATEX macros7 which will put the text into an attractive format. These chores can be
done independently from each other and by more than one individual. Again, because
of the open nature of this project, pieces of material and data can be used by different
books.

7One can only expect that open source and readable format will be used for this project. But more
than that, only LATEX, and perhaps troff, have the ability to produce the quality that one expects for
these writings. The text processes, especially LATEX, are the only ones which have a cross platform ability
to produce macros and a uniform feel and quality. Word processors, such as OpenOffice, Abiword, and
Microsoft Word software, are not appropriate for these projects. Further, any text that is produced
by Microsoft and kept in “Microsoft” format are against the spirit of this project In that they force
spending money on Microsoft software.
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Prologue For This Book

Version 0.4.9 pp. ? Feb ?, 2012

over 400,000 downloads

In the last three years the focus was on building the fluid mechanics book. In the
construction of the fluid book the potto style file significantly changed to the the point
that render the old files of book as un–compilable. This work was to bring these file
up to date. Several chapters from that the fluid book were summarized into single
introduction chapter on Fluid Mechanics. There are several additions which include
better description of the shock tube, and sound in variable liquid density etc.

Version 0.4.8.5a . July 21, 2009

over 150,000 downloads

The spread of the book was the biggest change that can be observed during the last
year (more than a year). Number of download reached to over 160,000 copies. The
book became the main textbook in many universities. This time, the main work focused
on corrections and minor additions. The fluid mechanics book is under construction
and reached to 0.17x version. Hopefully when finished, with good help in the coming
months will be used in this book to make better introduction. Other material in this
book like the gas dynamics table and equation found their life and very popular today.
This additions also include GDC which become the standard calculator for the gas
dynamics class.

li
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Version 0.4.8 Jan. 23, 2008

It is more than a year ago, when the previous this section was modified. Many things
have changed, and more people got involved. It nice to know that over 70,000 copies
have been download from over 130 countries. It is more pleasant to find that this
book is used in many universities around the world, also in many institutes like NASA
(a tip from Dr. Farassat, NASA ”to educate their “young scientist, and engineers”)
and others. Looking back, it must be realized that while, this book is the best in many
areas, like oblique shock, moving shock, fanno flow, etc there are missing some sections,
like methods of characteristics, and the introductory sections (fluid mechanics, and
thermodynamics). Potto–GDC is much more mature and it is changing from “advance
look up” to a real gas dynamics calculator (for example, calculation of unchoked Fanno
Flow). Today Potto–GDC has the only capability to produce the oblique shock figure.
Potto-GDC is becoming the major educational educational tool in gas dynamics. To
kill two birds in one stone, one, continuous requests from many and, two, fill the
introductory section on fluid mechanics in this book this area is major efforts in the
next few months for creating the version 0.2 of the “Basic of Fluid Mechanics” are
underway.

Version 0.4.3 Sep. 15, 2006

The title of this section is change to reflect that it moved to beginning of the book.
While it moves earlier but the name was not changed. Dr. Menikoff pointed to this
inconsistency, and the author is apologizing for this omission.

Several sections were add to this book with many new ideas for example
on the moving shock tables. However, this author cannot add all the things that he
was asked and want to the book in instant fashion. For example, one of the reader
ask why not one of the example of oblique shock was not turn into the explanation of
von Neumann paradox. The author was asked by a former client why he didn’t insert
his improved tank filling and evacuating models (the addition of the energy equation
instead of isentropic model). While all these requests are important, the time is limited
and they will be inserted as time permitted.

The moving shock issues are not completed and more work is needed also
in the shock tube. Nevertheless, the ideas of moving shock will reduced the work for
many student of compressible flow. For example solving homework problem from other
text books became either just two mouse clicks away or just looking at that the tables
in this book. I also got request from a India to write the interface for Microsoft. I am
sorry will not be entertaining work for non Linux/Unix systems, especially for Microsoft.
If one want to use the software engine it is okay and permitted by the license of this
work.

The download to this mount is over 25,000.
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Version 0.4.2

It was surprising to find that over 14,000 downloaded and is encouraging to receive over
200 thank you eMail (only one from U.S.A./Arizona) and some other reactions. This
textbook has sections which are cutting edge research8.

The additions of this version focus mainly on the oblique shock and related
issues as results of questions and reactions on this topic. However, most readers reached
to www.potto.org by searching for either terms “Rayleigh flow” (107) and “Fanno flow”
((93). If the total combined variation search of terms “Fanno” and “Rayleigh” (mostly
through google) is accounted, it reaches to about 30% (2011). This indicates that these
topics are highly is demanded and not many concerned with the shock phenomena as
this author believed and expected. Thus, most additions of the next version will be
concentrated on Fanno flow and Rayleigh flow. The only exception is the addition to
Taylor–Maccoll flow (axisymmetricale conical flow) in Prandtl–Meyer function (currently
in a note form).

Furthermore, the questions that appear on the net will guide this author on
what is really need to be in a compressible flow book. At this time, several questions
were about compressibility factor and two phase flow in Fanno flow and other kind
of flow models. The other questions that appeared related two phase and connecting
several chambers to each other. Also, an individual asked whether this author intended
to write about the unsteady section, and hopefully it will be near future.

Version 0.4

Since the last version (0.3) several individuals sent me remarks and suggestions. In the
introductory chapter, extensive description of the compressible flow history was written.
In the chapter on speed of sound, the two phase aspects were added. The isothermal
nozzle was combined with the isentropic chapter. Some examples were added to the
normal shock chapter. The fifth chapter deals now with normal shock in variable area
ducts. The sixth chapter deals with external forces fields. The chapter about oblique
shock was added and it contains the analytical solution. At this stage, the connection
between Prandtl–Meyer flow and oblique is an note form. The a brief chapter on
Prandtl–Meyer flow was added.

Version 0.3

In the traditional class of compressible flow it is assumed that the students will be
aerospace engineers or dealing mostly with construction of airplanes and turbomachin-
ery. This premise should not be assumed. This assumption drives students from other
fields away from this knowledge. This knowledge should be spread to other fields be-
cause it needed there as well. This “rejection” is especially true when students feel that
they have to go through a “shock wave” in their understanding.

8 A reader asked this author to examine a paper on Triple Shock Entropy Theorem and Its Conse-
quences by Le Roy F. Henderson and Ralph Menikoff. This led to comparison between maximum to
ideal gas model to more general model.
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This book is the second book in the series of POTTO project books. POTTO
project books are open content textbooks. The reason the topic of Compressible Flow
was chosen, while relatively simple topics like fundamentals of strength of material were
delayed, is because of the realization that manufacture engineering simply lacks funda-
mental knowledge in this area and thus produces faulty designs and understanding of
major processes. Unfortunately, the undersigned observed that many researchers who
are dealing with manufacturing processes are lack of understanding about fluid mechan-
ics in general but particularly in relationship to compressible flow. In fact one of the
reasons that many manufacturing jobs are moving to other countries is because of the
lack of understanding of fluid mechanics in general and compressible in particular. For
example, the lack of competitive advantage moves many of the die casting operations
to off shore9. It is clear that an understanding of Compressible Flow is very important
for areas that traditionally have ignored the knowledge of this topic10.

As many instructors can recall from their time as undergraduates, there
were classes during which most students had a period of confusion, and then later,
when the dust settled, almost suddenly things became clear. This situation is typical
also for Compressible Flow classes, especially for external compressible flow (e.g. flow
around a wing, etc.). This book offers a more balanced emphasis which focuses more
on internal compressible flow than the traditional classes. The internal flow topics
seem to be common for the “traditional” students and students from other fields, e.g.,
manufacturing engineering.

This book is written in the spirit of my adviser and mentor E.R.G. Eckert.
Who, aside from his research activity, wrote the book that brought a revolution in
the heat transfer field of education. Up to Eckert’s book, the study of heat transfer
was without any dimensional analysis. He wrote his book because he realized that the
dimensional analysis utilized by him and his adviser (for the post doc), Ernst Schmidt,
and their colleagues, must be taught in engineering classes. His book met strong
criticism in which some called to burn his book. Today, however, there is no known
place in world that does not teach according to Eckert’s doctrine. It is assumed that
the same kind of individuals who criticized Eckert’s work will criticize this work. This
criticism will not change the future or the success of the ideas in this work. As a wise
person says “don’t tell me that it is wrong, show me what is wrong”; this is the only
reply. With all the above, it must be emphasized that this book will not revolutionize
the field even though considerable new materials that have never been published are
included. Instead, it will provide a new emphasis and new angle to Gas Dynamics.

Compressible flow is essentially different from incompressible flow in mainly
two respects: discontinuity (shock wave) and choked flow. The other issues, while
important, are not that crucial to the understanding of the unique phenomena of com-
pressible flow. These unique issues of compressible flow are to be emphasized and

9Please read the undersigned’s book “Fundamentals of Die Casting Design,” which demonstrates
how ridiculous design and research can be.

10The fundamental misunderstanding of choking results in poor models (research) in the area of
die casting, which in turn results in many bankrupt companies and the movement of the die casting
industry to offshore.
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shown. Their applicability to real world processes is to be demonstrated11.
The book is organized into several chapters which, as a traditional textbook,

deals with a basic introduction of thermodynamics concepts (under construction). The
second chapter deals with speed of sound. The third chapter provides the first example
of choked flow (isentropic flow in a variable area). The fourth chapter deals with a simple
case of discontinuity (a simple shock wave in a nozzle). The next chapter is dealing with
isothermal flow with and without external forces (the moving of the choking point),
again under construction. The next three chapters are dealing with three models of
choked flow: Isothermal flow12, Fanno flow and Rayleigh flow. First, the Isothermal flow
is introduced because of the relative ease of the analytical treatment. Isothermal flow
provides useful tools for the pipe systems design. These chapters are presented almost
independently. Every chapter can be “ripped” out and printed independently. The
topics of filling and evacuating of gaseous chambers are presented, normally missed from
traditional textbooks. There are two advanced topics which included here: oblique shock
wave, and properties change effects (ideal gases and real gases) (under construction).
In the oblique shock, for the first time analytical solution is presented, which is excellent
tool to explain the strong, weak and unrealistic shocks. The chapter on one-dimensional
unsteady state, is currently under construction.

The last chapter deals with the computer program, Gas Dynamics Calculator
(CDC-POTTO). The program design and how to use the program are described (briefly).

Discussions on the flow around bodies (wing, etc), and Prandtl–Meyer ex-
pansion will be included only after the gamma version unless someone will provide
discussion(s) (a skeleton) on these topics.

It is hoped that this book will serve the purposes that was envisioned for the
book. It is further hoped that others will contribute to this book and find additional
use for this book and enclosed software.

11If you have better and different examples or presentations you are welcome to submit them.
12It is suggested to referred to this model as Shapiro flow
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How This Book Was Written

This book started because I needed an explanation for manufacturing engineers. Ap-
parently many manufacturing engineers and even some researchers in manufacturing
engineering were lack of understanding about fluid mechanics in particularly about
compressible flow. Therefore, I wrote to myself some notes and I converted one of the
note to a chapter in my first book, “Fundamentals Of Die Casting Design.” Later, I
realized that people need down to earth book about compressible flow and this book
was born. Later I need a chapter on fluid mechamics introduction so I wrote about fluid
mechacnics and several of the chapter from that book were summirized to be included
in this book.

The free/open content of the book was created because the realization that
open content accelerated the creation of books and reaction to the corruption of the
court implementing the copyright law by manufacturing facts and laws. It was farther
extended by the allegation of free market and yet the academic education cost is sky
rocketing without a real reason and real competition. There is no reason why a textbook
which cost at the very most $10 to publish/produce to cost about 150 dollars. If a
community will pull together, the best books can be created. Anyone can be part of
it. For example, even my 10 years old son, Eliezer made me change the chapter on
isothermal flow. He made me realized that the common approach to supersonic branch
of isothermal as non–existent is the wrong approach. It should be included because this
section provides the explanation and direction on what Fanno flow model will approach
if heat transfer is taken into account13.

I realized that books in compressible flow are written in a form that is hard
for non fluid mechanic engineer to understand. Therefore, this book is designed to be
in such form that is easy to understand. I wrote notes and asked myself what materials
should be included in such a book so when I provide consultation to a company, I do
not need to explain the fundamentals. Therefore, there are some chapters in this book

13Still in untyped note form.
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which are original materials never published before. The presentation of some of the
chapters is different from other books. The book does not provide the old style graphical
solution methods yet provide the graphical explanation of things.

Of course, this book was written on Linux (MicrosoftLess book). This book
was written using the vim editor for editing (sorry never was able to be comfortable
with emacs). The graphics were done by TGIF, the best graphic program that this
author experienced so far. The old figures were done by grap (part the old Troff).
Unfortunately, I did not have any access to grap and switched to Grace. Grace is a
problematic program. Finally, the gle is replacing the old grace. So far, it seems much
better choice and from version 0.4.8 all will be done using GLE. The spell checking was
done by gaspell, a program that cannot be used on a new system and I had to keep
my old Linux to make it work14. I hope someone will write a new spell check so I can
switch to a new system.

The figure in the cover page was created by Michael Petschauer, graphic
designer, and is open/free content copyrighted by him ( happy circle@yahoo.com).

14If you would like to to help me to write a new spell check user interface, please contact me.



About Gas Dynamics Calculator

Gas Dynamic Calculator, (Potto–GDC) was created to generate various tables for the
book either at end the chapters or for the exercises. This calculator was given to several
individuals and they found Potto–GDC to be very useful. So, I decided to include Potto–
GDC to the book.

Initially, the Potto-GDC was many small programs for specific tasks. For
example, the stagnation table was one such program. Later, the code became a new
program to find the root of something between the values of the tables e.g. finding
parameters for a given 4fL

D . At that stage, the program changed to contain a primitive
interface to provide parameters to carry out the proper calculations. Yet, then, every
flow model was a different program.

When it become cumbersome to handle several programs, the author utilized
the object oriented feature of C++ and assigned functions to the common tasks to
a base class and the specific applications to the derived classes. Later, a need to
intermediate stage of tube flow model (the PipeFlow class) was created and new classes
were created.

The graphical interface was created only after the engine was written. The
graphical interface was written to provide a filter for the unfamiliar user. It also remove
the need to recompile the code every time.

Version 0.5

In this version the main point was on the bugs fixing but also add the results can be
shown in a HTML code. In fanno flow, many problems of unchoked Fanno flow now
possible to solve (by one click).

lix
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Version 0.4.3
This version add several features among them is the shock dynamics calculations with
the iteration info. The last feature is good for homework either for the students or the
instructors.

Version 0.4.1.7
Version 4.1.7 had several bug fixes and add two angle calculations to the oblique shock.
Change the logtable to tabular environment for short tables.



Preface

"In the beginning, the POTTO project was

without form, and void; and emptiness was

upon the face of the bits and files. And the

fingers of the Author moved upon the face of

the keyboard. And the Author said, Let there

be words, and there were words." 15.

This book, Fundamentals of Compressible Flow, describes the fundamentals
of compressible flow phenomena for engineers and others. This book is designed to
replace the book(s) or instructor’s notes for the compressible flow in (mostly) under-
graduate classes for engineering/science students. It is hoped that the book could be
used as a reference book for people who have at least some knowledge of the basics
of fundamental fluid mechanics, and basic science such as calculus, physics, etc. It is
hoped that the computer program enclosed in the book will take on a life of its own
and develop into an open content or source project.

The structure of this book is such that many of the chapters could be usable
independently. For example, if you need information about, say, Fanno flow, you can
read just chapter 10. I hope this makes the book easier to use as a reference manual.
However, this manuscript is first and foremost a textbook, and secondly a reference
manual only as a lucky coincidence.

I have tried to describe why the theories are the way they are, rather than just
listing “seven easy steps” for each task. This means that a lot of information is presented
which is not necessary for everyone. These explanations have been marked as such and
can be skipped.16 Reading everything will, naturally, increase your understanding of the
fundamentals of compressible fluid flow.

This book is written and maintained on a volunteer basis. Like all volunteer
work, there is a limit on how much effort I was able to put into the book and its

15To the power and glory of the mighty God. This book is only to explain his power.
16At the present, the book is not well organized. You have to remember that this book is a work in

progress.
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organization. Moreover, due to the fact that English is my third language and time
limitations, the explanations are not as good as if I had a few years to perfect them.
Nevertheless, I believe professionals working in many engineering fields will benefit from
this information. This book contains many original models, and explanations never
published before.

I have left some issues which have unsatisfactory explanations in the book,
marked with a Mata mark. I hope to improve or to add to these areas in the near future.
Furthermore, I hope that many others will participate of this project and will contribute
to this book (even small contributions such as providing examples or editing mistakes
are needed).

I have tried to make this text of the highest quality possible and am inter-
ested in your comments and ideas on how to make it better. Incorrect language, errors,
ideas for new areas to cover, rewritten sections, more fundamental material, more math-
ematics (or less mathematics); I am interested in it all. If you want to be involved in
the editing, graphic design, or proofreading, please drop me a line. You may contact
me via Email at “barmeir@gmail.com”.

Naturally, this book contains material that never was published before. This
material never went through a peer review. While peer review and publication in a
professional publication is excellent idea in theory. In practice, this process leaves a large
room to blockage of novel ideas and plagiarism. If you would like be “peer reviews”
or critic to my new ideas please send me your idea(s). Even reaction/comments from
individuals like David Marshall17

Several people have helped me with this book, directly or indirectly. I would
like to especially thank to my adviser, Dr. E. R. G. Eckert, whose work was the inspiration
for this book. I also would like to thank Amy Ross for her advice ideas, and assistance.
Our new volunteer, Irene Tan had done wonderful job.

The symbol META was added to provide typographical conventions to blurb
as needed. This is mostly for the author’s purposes and also for your amusement. There
are also notes in the margin, but those are solely for the author’s purposes, ignore them
please. They will be removed gradually as the version number advances.

I encourage anyone with a penchant for writing, editing, graphic ability, LATEX
knowledge, and material knowledge and a desire to provide open content textbooks and
to improve them to join me in this project. If you have Internet e-mail access, you can
contact me at “barmeir@gmail.com”.

17Dr. Marshall wrote to this author that the author should review other people work before he write
any thing new (well, literature review is always good?). Over ten individuals wrote me about this letter.
I am asking from everyone to assume that his reaction was innocent one. While his comment looks
like unpleasant reaction, it brought or cause the expansion the oblique shock chapter. However, other
email that imply that someone will take care of this author aren’t appreciated.



To Do List and Road Map

This book is not complete and probably never will be completed. There will always
new problems to add or to polish the explanations or include more new materials. Also
issues that associated with the book like the software has to be improved. It is hoped
the changes in TEX and LATEX related to this book in future will be minimal and minor.
It is hoped that the style file will be converged to the final form rapidly. Nevertheless,
there are specific issues which are on the “table” and they are described herein.

At this stage, several chapters are missing. The effects of the deviations
from the ideal gas model on the properties should be included. Further topics related
to non-ideal gas such as steam and various freons are in the process of being added to
this book especially in relationship to Fanno flow.

One of the virtue of this book lay in the fact that it contains a software that
is extensible. For example, the Fanno module can be extended to include effects of real
gases. This part will be incorporated in the future hopefully with the help of others.

Specific missing parts from every chapters are discussed below. These omis-
sions, mistakes, approach problems are sometime appears in the book under the Meta
simple like this

Meta
sample this part.

Meta End
Questions/problems appear as a marginal note. On occasions a footnote was used to
point out for a need of improvement. You are always welcome to add a new mate-
rial: problem, question, illustration or photo of experiment. Material can be further
illuminate. Additional material can be provided to give a different angle on the issue at
hand.
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Speed of Sound [beta]

� Discussion about the movement in medium with variation in speed of sound. This
concept in relation of the wind tunnel

� Problems with atmosphere with varied density and temperature. Mixed gases and
liquids. (some what done)

� More problems in relationship to two phase. Speed of sound in wet steam.

Stagnation effects [advance]

� Extend the applicability with examples.

� Cp as a function of temperature (deviation from ideal gas model) “real gas”’ like
water vapor

� History – on the teaching part (for example when the concept of stagnation was
first taught).

Nozzle [advance]

� The effect of external forces (add problems).

� Real gases effects (mere temperature effects)

� Flow with “tabulated gases” calculations

� Phase change and two phase flow (multi choking points) effects (after 1.0 version).

� The dimensional analysis of the flow when the flow can be considered as isother-
mal.

� The combined effects of isentropic nozzle with heat transfer (especially with re-
lationship to the program.).

Normal Shock [advance]

� Extend the partially (open/close) moving shock theory. [done]

� Provide more examples on the previous topic.

� Shock in real gases like water vapor.

� Shock in (partially) two phase gases like air with dust particles.

� Extend the shock tube [almost done]

� Shocks in two and three dimensions.
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Minor Loss [NSV]

� Abrupt expansion

� Flow in Bend

Isothermal Flow [advance]

� Classification of Problems

� Comparison of results with Fanno flow

� Pipes Network calculations.

Fanno Flow [advance]

� More examples: various categories

� Some improvement on the software (clean up)

� Real gas effects (compressible factor)

� Tabulated gas

Rayleigh Flow [beta]

� To mature the chapter: discussion on the “dark” corners of this model.

� Provide discussion on variations of the effecting parameters.

� Examples: provide categorization

Add mass [NSY]

� Simple add mass in a continuous form

Evacuation and filling semi rigid Chambers [alpha]

� To construct the Rayleigh flow in the tube (thermal chocking)

� Energy equation (non isentropic process)

� Examples classifications

� Software (converting the FORTRAN program to c++)
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Evacuating and filling chambers under external forces [alpha]

� Comparison with chemical reaction case

� Energy equation (non isentropic process)

� Examples

� Software transformation from FORTRAN to c++. The FORTRAN version will
not be included.

Oblique Shock [advance]

� Add application to design problems

� Real Gas effects

Prandtl–Meyer

� The limitations (Prandtl-Meyer) (done).

� Application

� Cylindrical coordinate

� Marcell–Taylor (from the notes)

� Examples

Transient problem [NYP]

� Method of Characteristic
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CHAPTER 1

Introduction

1.1 What is Compressible Flow?

This book deals with an introduction1 to the flow of compressible substances (gases).
The main difference between compressible flow and almost incompressible flow is not
the fact that compressibility has to be considered. Rather, the difference is in two
phenomena that do not exist in incompressible flow2. The first phenomenon is the
very sharp discontinuity (jump) in the flow in properties. The second phenomenon is
the choking of the flow. Choking is when downstream variations don’t effect the flow3.
Though choking occurs in certain pipe flows in astronomy, there also are situations
of choking in general (external) flow4. Choking is referred to as the situation where
downstream conditions, which are beyond a critical value(s), doesn’t affect the flow.

The shock wave and choking are not intuitive for most people. However, one
has to realize that intuition is really a condition where one uses his past experiences to
predict other situations. Here one has to learn to use his intuition as a tool for future
use. Thus, not only aeronautic engineers, but other engineers, and even manufacturing
engineers will be able use this “intuition” in design and even research.

1This book is gradually sliding to include more material that isn’t so introductory. But an attempt
is made to present the material in introductory level.

2It can be argued that in open channel flow there is a hydraulic jump (discontinuity) and in some
ranges no effect of downstream conditions on the flow. However, the uniqueness of the phenomena in
the gas dynamics provides spectacular situations of a limited length (see Fanno model) and thermal
choking, etc. Further, there is no equivalent to oblique shock wave. Thus, this richness is unique to
gas dynamics.

3The thermal choking is somewhat different but a similarity exists.
4This book is intended for engineers and therefore a discussion about astronomical conditions isn’t

presented.

1
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1.2 Why Compressible Flow is Important?

Compressible flow appears in many natural and many technological processes. Com-
pressible flow deals with more than air, including steam, natural gas, nitrogen and
helium, etc. For instance, the flow of natural gas in a pipe system, a common method
of heating in the u.s., should be considered a compressible flow. These processes in-
clude the flow of gas in the exhaust system of an internal combustion engine, and also
gas turbine, a problem that led to the Fanno flow model. The above flows that were
mentioned are called internal flows. Compressible flow also includes flow around bodies
such as the wings of an airplane, and is considered an external flow.

These processes include situations not expected to have a compressible flow,
such as manufacturing process such as the die casting, injection molding. The die
casting process is a process in which liquid metal, mostly aluminum, is injected into a
mold to obtain a near final shape. The air is displaced by the liquid metal in a very
rapid manner, in a matter of milliseconds, therefore the compressibility has to be taken
into account.

Clearly, Aero Engineers are not the only ones who have to deal with some aspect
of compressible flow. For manufacturing engineers there are many situations where
the compressibility or compressible flow understating is essential for adequate design.
For instance, the control engineers who are using pneumatic systems use compressed
substances. The cooling of some manufacturing systems and design of refrigeration
systems also utilizes compressed air flow knowledge. Some aspects of these systems
require consideration of the unique phenomena of compressible flow.

Traditionally, most gas dynamics (compressible flow) classes deal mostly with
shock waves and external flow and briefly teach Fanno flows and Rayleigh flows (two
kind of choking flows). There are very few courses that deal with isothermal flow. In
fact, many books on compressible flow ignore the isothermal flow5 .

In this book, a greater emphasis is on the internal flow. This doesn’t in any way
meant that the important topics such as shock wave and oblique shock wave should be
neglected. This book contains several chapters which deal with external flow as well.

1.3 Historical Background

In writing this book it became clear that there is more unknown and unwritten about
the history of compressible fluid than known. While there are excellent books about
the history of fluid mechanics (hydraulic) see for example book by Rouse6. There
are numerous sources dealing with the history of flight and airplanes (aeronautic)7.
Aeronautics is an overlapping part of compressible flow, however these two fields are
different. For example, the Fanno flow and isothermal flow, which are the core of

5Any search on the web on classes of compressible flow will show this fact and the undersigned can
testify that this was true in his first class as a student of compressible flow.

6Hunter Rouse and Simon Inc, History of Hydraulics (Iowa City: Institute of Hydraulic Research,
1957)

7Anderson, J. D., Jr. 1997. A History of Aerodynamics: And Its Impact on Flying Machines,
Cambridge University Press, Cambridge, England.
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gas dynamics, are not part of aerodynamics. Possible reasons for the lack of written
documentation are one, a large part of this knowledge is relatively new, and two, for
many early contributors this topic was a side issue. In fact, only one contributor of
the three main models of internal compressible flow (Isothermal, Fanno, Rayleigh) was
described by any text book. This was Lord Rayleigh, for whom the Rayleigh flow was
named. The other two models were, to the undersigned, unknown. Furthermore, this
author did not find any reference to isothermal flow model earlier to Shapiro’s book.
There is no book8 that describes the history of these models. For instance, the question,
who was Fanno, and when did he live, could not be answered by any of the undersigned’s
colleagues in University of Minnesota or elsewhere.

At this stage there are more questions about the history of compressible flow
needing to be answered. Sometimes, these questions will appear in a section with a title
but without text or with only a little text. Sometimes, they will appear in a footnote
like this9 For example, it is obvious that Shapiro published the erroneous conclusion
that all the chocking occurred at M = 1 in his article which contradicts his isothermal
model. Additional example, who was the first to “conclude” the “all” the chocking
occurs at M = 1? Is it Shapiro?

Originally, there was no idea that there are special effects and phenomena of
compressible flow. Some researchers even have suggested that compressibility can be
“swallowed” into the ideal flow (Euler’s equation’s flow is sometimes referred to as
ideal flow). Even before Prandtl’s idea of boundary layer appeared, the significant and
importance of compressibility emerged.

In the first half of nineteen century there was little realization that the com-
pressibility is important because there were very little applications (if any) that required
the understanding of this phenomenon. As there were no motivations to investigate the
shock wave or choked flow both were treated as the same, taking compressible flow as
if it were incompressible flow.

It must be noted that researchers were interested in the speed of sound even
long before applications and knowledge could demand any utilization. The research and
interest in the speed of sound was a purely academic interest. The early application
in which compressibility has a major effect was with fire arms. The technological im-
provements in fire arms led to a gun capable of shooting bullets at speeds approaching
to the speed of sound. Thus, researchers were aware that the speed of sound is some
kind of limit.

In the second half of the nineteen century, Mach and Fliegner “stumbled” over
the shock wave and choking, respectively. Mach observed shock and Fliegner measured
the choking but theoretical science did not provide explanation for it (or was award that
there is an explanation for it.).

In the twentieth century the flight industry became the pushing force. Under-
standably, aerospace engineering played a significant role in the development of this

8The only remark found about Fanno flow that it was taken from the Fanno Master thesis by his
adviser. Here is a challenge: find any book describing the history of the Fanno model.

9Who developed the isothermal model? The research so far leads to Shapiro. Perhaps this flow
should be named after the Shapiro. Is there any earlier reference to this model?
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knowledge. Giants like Prandtl and his students like Von Karman , as well as others
like Shapiro , dominated the field. During that time, the modern basic classes became
“solidified.” Contributions by researchers and educators from other fields were not as
dominant and significant, so almost all text books in this field are written from an
aerodynamic prospective.

1.3.1 Early Developments

The compressible flow is a subset of fluid mechanics/hydraulics and therefore the knowl-
edge development followed the understanding of incompressible flow. Early contributors
were motivated from a purely intellectual curiosity, while most later contributions were
driven by necessity. As a result, for a long time the question of the speed of sound was
bounced around.

Speed of Sound

The idea that there is a speed of sound and that it can be measured is a major
achievement. A possible explanation to this discovery lies in the fact that mother
nature exhibits in every thunder storm the difference between the speed of light and
the speed of sound. There is no clear evidence as to who came up with this concept,
but some attribute it to Galileo Galilei: 166x. Galileo, an Italian scientist, was one
of the earliest contributors to our understanding of sound. Dealing with the difference
between the two speeds (light, sound) was a major part of Galileo’s work. However,
once there was a realization that sound can be measured, people found that sound
travels in different speeds through different mediums. The early approach to the speed
of sound was by the measuring of the speed of sound.

Other milestones in the speed of sound understanding development were by
Leonardo Da Vinci, who discovered that sound travels in waves (1500). Marin Mersenne
was the first to measure the speed of sound in air (1640). Robert Boyle discovered that
sound waves must travel in a medium (1660) and this lead to the concept that sound
is a pressure change. Newton was the first to formulate a relationship between the
speed of sound in gases by relating the density and compressibility in a medium (by
assuming isothermal process). Newton’s equation is missing the heat ratio, k (late
1660’s). Maxwell was the first to derive the speed of sound for gas as c =

√
k R T from

particles (statistical) mechanics. Therefore some referred to coefficient
√

k as Maxwell’s
coefficient.
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1.3.2 The shock wave puzzle

Here is where the politics of science was a major obstacle to achieving an advancement10.
not giving the due credit to Rouse. In the early 18xx, conservation of energy was

a concept that was applied only to mechanical energy. On the other side, a different
group of scientists dealt with calorimetry (internal energy). It was easier to publish
articles about the second law of thermodynamics than to convince anyone of the first
law of thermodynamics. Neither of these groups would agree to “merge” or “relinquish”
control of their “territory” to the other. It took about a century to establish the first
law11.

At first, Poisson found a “solution” to the Euler’s equations with certain
boundary conditions which required discontinuity12 which had obtained an implicit form
in 1808. Poisson showed that solutions could approach a discontinuity by using con-
servation of mass and momentum. He had then correctly derived the jump conditions
that discontinuous solutions must satisfy. Later, Challis had noticed contradictions
concerning some solutions of the equations of compressible gas dynamics13. Again
the “jumping” conditions were redeveloped by two different researchers independently:
Stokes and Riemann. Riemann, in his 1860 thesis, was not sure whether or not dis-
continuity is only a mathematical creature or a real creature. Stokes in 1848 retreated
from his work and wrote an apology on his “mistake.”14 Stokes was convinced by Lord
Rayleigh and Lord Kelvin that he was mistaken on the grounds that energy is conserved
(not realizing the concept of internal energy).

At this stage some experimental evidence was needed. Ernest Mach studied
several fields in physics and also studied philosophy. He was mostly interested in ex-
perimental physics. The major breakthrough in the understanding of compressible flow
came when Ernest Mach “stumbled” over the discontinuity. It is widely believed that
Mach had done his research as purely intellectual research. His research centered on
optic aspects which lead him to study acoustic and therefore supersonic flow (high
speed, since no Mach number was known at that time). However, it is logical to believe
that his interest had risen due to the need to achieve powerful/long–distance shooting

10Amazingly, science is full of many stories of conflicts and disputes. Aside from the conflicts of
scientists with the Catholic Church and Muslim religion, perhaps the most famous is that of Newton’s
netscaping (stealing and embracing) Leibniz[’s] invention of calculus. There are even conflicts from
not giving enough credit, like Moody. Even the undersigned encountered individuals who have tried
to ride on his work. The other kind of problem is “hijacking” by a sector. Even on this subject, the
Aeronautic sector “took over” gas dynamics as did the emphasis on mathematics like perturbations
methods or asymptotic expansions instead on the physical phenomena. Major material like Fanno flow
isn’t taught in many classes, while many of the mathematical techniques are currently practiced. So,
these problems are more common than one might be expected.

11This recognition of the first law is today the most “obvious” for engineering students. Yet for
many it was still debatable up to the middle of the nineteen century.

12Siméon Denis Poisson, French mathematician, 1781-1840 worked in Paris, France. ”M’emoire sur
la th’eorie du son,” J. Ec. Polytech. 14 (1808), 319-392. From Classic Papers in Shock Compression
Science, 3-65, High-press. Shock Compression Condens. Matter, Springer, New York, 1998.

13James Challis, English Astronomer, 1803-1882. worked at Cambridge, England UK. ”On the
velocity of sound,” Philos. Mag. XXXII (1848), 494-499

14Stokes George Gabriel Sir, Mathematical and Physical Papers, Reprinted from the original journals
and transactions, with additional notes by the author. Cambridge, University Press, 1880-1905.
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rifles/guns. At that time many inventions dealt with machine guns which were able to
shoot more bullets per minute. At the time, one anecdotal story suggests a way to make
money by inventing a better killing machine for the Europeans. While the machine gun
turned out to be a good killing machine, defense techniques started to appear such
as sand bags. A need for bullets that could travel faster to overcome these obstacles
was created. Therefore, Mach’s paper from 1876 deals with the flow around bullets.
Nevertheless, no known15 equations or explanations resulted from these experiments.

Mach used his knowledge in Optics to study the flow around bullets. What
makes Mach’s achievement all the more remarkable was the technique he used to take
the historic photograph: He employed an innovative approach called the shadowgraph.
He was the first to photograph the shock wave. In his paper discussing ”Photographische
Fixierung der durch Projektile in der Luft eingeleiten Vorgange” he showed a picture of a
shock wave (see Figure 1.7). He utilized the variations of the air density to clearly show
shock line at the front of the bullet. Mach had good understanding of the fundamentals
of supersonic flow and the effects on bullet movement (supersonic flow). Mach’s paper
from 1876 demonstrated shock wave (discontinuity) and suggested the importance of
the ratio of the velocity to the speed of sound. He also observed the existence of a
conical shock wave (oblique shock wave).

Mach’s contributions can be summarized as providing an experimental proof to
discontinuity. He further showed that the discontinuity occurs at M = 1 and realized
that the velocity ratio (Mach number), and not the velocity, is the important parameter
in the study of the compressible flow. Thus, he brought confidence to the theoreticians
to publish their studies. While Mach proved shock wave and oblique shock wave ex-
istence, he was not able to analyze it (neither was he aware of Poisson’s work or the
works of others.).

Back to the pencil and paper, the jump conditions were redeveloped and now
named after Rankine16 and Hugoniot17. Rankine and Hugoniot, redeveloped inde-
pendently the equation that governs the relationship of the shock wave. Shock was
assumed to be one dimensional and mass, momentum, and energy equations18 lead to
a solution which ties the upstream and downstream properties. What they could not
prove or find was that shock occurs only when upstream is supersonic, i.e., direction
of the flow. Later, others expanded Rankine-Hugoniot’s conditions to a more general
form19.

15The words “no known” refer to the undersigned. It is possible that some insight was developed
but none of the documents that were reviewed revealed it to the undersigned.

16William John Macquorn Rankine, Scottish engineer, 1820-1872. He worked in Glasgow, Scotland
UK. ”On the thermodynamic theory of waves of finite longitudinal disturbance,” Philos. Trans. 160
(1870), part II, 277-288. Classic papers in shock compression science, 133-147, High-press. Shock
Compression Condens. Matter, Springer, New York, 1998

17Pierre Henri Hugoniot, French engineer, 1851-1887. ”Sur la propagation du mouvement dans les
corps et sp’ecialement dans les gaz parfaits, I, II” J. Ec. Polytech. 57 (1887), 3-97, 58 (1889), 1-
125. Classic papers in shock compression science, 161-243, 245-358, High-press. Shock Compression
Condens. Matter, Springer, New York, 1998

18Today it is well established that shock has three dimensions but small sections can be treated as
one dimensional.

19To add discussion about the general relationships.
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Here, the second law has been around for over 40 years and yet the significance
of it was not was well established. Thus, it took over 50 years for Prandtl to arrive
at and to demonstrate that the shock has only one direction20. Today this equa-
tion/condition is known as Prandtl’s equation or condition (1908). In fact Prandtl is
the one who introduced the name of Rankine-Hugoniot’s conditions not aware of the
earlier developments of this condition. Theodor Meyer (Prandtl’s student) derived the
conditions for oblique shock in 190821 as a byproduct of the expansion work.

Fig. -1.1. The shock as a connection of Fanno and
Rayleigh lines after Stodola, Steam and Gas Turbine

It was probably later that
Stodola (Fanno’s adviser) real-
ized that the shock is the inter-
section of the Fanno line with the
Rayleigh line. Yet, the super-
sonic branch is missing from his
understanding (see Figure (1.1)).
In fact, Stodola suggested the
graphical solution utilizing the
Fanno line.

The fact that the condi-
tions and direction were known
did not bring the solution to the
equations. The “last nail” of un-
derstanding was put by Landau,
a Jewish scientist who worked in
Moscow University in the 1960’s
during the Communist regimes.
A solution was found by Lan-
dau & Lifshitz and expanded
by Kolosnitsyn & Stanyukovich
(1984).

Since early in the 1950s the analytical relationships between the oblique shock,
deflection angle, shock angle, and Mach number was described as impossible to obtain.
There were until recently (version 0.3 of this book) several equations that tied various
properties/quantities for example, the relationship between upstream Mach number and
the angles. The first full analytical solution connecting the angles with upstream Mach
number was published in this book version 0.3. The probable reason that analytical
solution was not discovered earlier because the claim in the famous report of NACA

20 Some view the work of G. I. Taylor from England as the proof (of course utilizing the second law)
21Theodor Meyer in Mitteil. üb. Forsch-Arb. Berlin, 1908, No. 62, page 62.
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1135 that explicit analytical solution isn’t possible2223.

The question whether the angle of the oblique shock is stable or which of the
three roots is stable was daunting since the early discovery that there are three possible
solutions. It is amazing that early research concluded that only the weak solution is
possible or stable as opposed to the reality. The first that attempt this question where
in 1931 by Epstein24. His analysis was based on Hamilton’s principle when he ignore the
boundary condition. The results of that analysis was that strong shock is unstable. The
researchers understood that flow after a strong shock was governed by elliptic equation
while the flow after a weak shock was governed by hyperbolic equations. This difference
probably results in not recognizing that The boundary conditions play an important role
in the stability of the shock25. In fact analysis based on Hamilton’s principle isn’t
suitable for stability because entropy creation was recognized 1955 by Herivel26.

Carrier27 was first to recognize that strong and weak shocks stable. In fact,
the confusion on this issue is persistent until now. Even all books that were published
recently claimed that no strong shock was ever observed in flow around cone (Taylor–
Maccoll flow). In fact, even this author sinned in this erroneous conclusion. The real
question isn’t if they exist rather under what conditions these shocks exist which was
suggested by Courant and Friedrichs in their book “Supersonic Flow and Shock Waves,”
published by Interscience Publishers, Inc. New York, 1948, p. 317.

The effect of real gases was investigated very early since steam was used propel
turbines. In general the mathematical treatment was left to numerical investigation and
there is relatively very little known on the difference between ideal gas model and real
gas. For example, recently, Henderson and Menikoff28 dealt with only the procedure to
find the maximum of oblique shock, but no comparison between real gases and ideal
gas is offered there.

22Since writing this book, several individuals point out that a solution was found in book “Analytical
Fluid Dynamics” by Emanuel, George, second edition, December 2000 (US$ 124.90). That solution is
based on a transformation of sin θ to tan β. It is interesting that transformation result in one of root
being negative. While the actual solution all the roots are real and positive for the attached shock.
The presentation was missing the condition for the detachment or point where the model collapse. But
more surprisingly, similar analysis was published by Briggs, J. “Comment on Calculation of Oblique
shock waves,” AIAA Journal Vol 2, No 5 p. 974, 1963. Hence, Emanuel’s partial solution just redone
36 years work (how many times works have to be redone in this field). In addition there was additional
publishing of similar works by Mascitti, V.R. and Wolf, T. In a way, part of analysis of this book is also
redoing old work. Yet, what is new in this work is completeness of all the three roots and the analytical
condition for detached shock and breaking of the model.

23See for a longer story in www.potto.org/obliqueArticle.php.
24Epstein, P. S., “On the air resistance of Projectiles,” Proceedings of the National Academy of

Science, Vol. 17, 1931, pp. 532-547.
25In study this issue this author realized only after examining a colleague experimental Picture 14.4

that it was clear that the Normal shock along with strong shock and weak shock “live” together
peacefully and in stable conditions.

26Herivel, J. F., “The Derivation of The Equations of Motion On an Ideal Fluid by Hamilton’s
Principle,,” Proceedings of the Cambridge philosophical society, Vol. 51, Pt. 2, 1955, pp. 344-349.

27Carrier, G.F., “On the Stability of the supersonic Flows Past as a Wedge,” Quarterly of Applied
Mathematics, Vol. 6, 1949, pp. 367–378.

28 Henderson and Menikoff, “Triple Shock Entropy Theorem,” Journal of Fluid Mechanics 366 (1998)
pp. 179–210.
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The moving shock and shock tube were study even before World War Two
(II). The realization that in most cases the moving shock can be analyzed as steady
state since it approaches semi steady state can be traced early of 1940’s. Up to this
version 0.4.3 of this book (as far it is known, this book is the first to publish this
tables), trial and error method was the only method to solve this problem. Only after
the dimensionless presentation of the problem and the construction of the moving shock
table the problem became trivial. Later, an explicit analytical solution for shock a head
of piston movement (a special case of open valve) was originally published in this book
for the first time.

1.3.3 Choking Flow

Fig. -1.2. The schematic of deLavel’s turbine af-
ter Stodola, Steam and Gas Turbine

The choking problem is almost unique
to gas dynamics and has many different
forms. Choking wasn’t clearly to be ob-
served, even when researcher stumbled
over it. No one was looking for or ex-
pecting the choking to occur, and when
it was found the significance of the chok-
ing phenomenon was not clear. The
first experimental choking phenomenon
was discovered by Fliegner’s experiments
which were conducted some time in the

middle of 186x29 on air flow through a
converging nozzle. As a result deLavel’s
nozzle was invented by Carl Gustaf Pa-
trik de Laval in 1882 and first success-
ful operation by another inventor (Cur-
tis) 1896 used in steam turbine. Yet,
there was no realization that the flow is choked just that the flow moves faster than
speed of sound.

The introduction of the steam engine and other thermodynamics cycles led to
the choking problem. The problem was introduced because people wanted to increase
the output of the Engine by increasing the flames (larger heat transfer or larger energy)
which failed, leading to the study and development of Rayleigh flow. According the
thermodynamics theory (various cycles) the larger heat supply for a given temperature
difference (larger higher temperature) the larger the output, but after a certain point it
did matter (because the steam was choked). The first to discover (try to explain) the
choking phenomenon was Rayleigh30.

After the introduction of the deLavel’s converging–diverging nozzle theoretical

29Fliegner Schweizer Bauztg., Vol 31 1898, p. 68–72. The theoretical first work on this issue was
done by Zeuner, “Theorie die Turbinen,” Leipzig 1899, page 268 f.

30Rayleigh was the first to develop the model that bears his name. It is likely that others had noticed
that flow is choked, but did not produce any model or conduct successful experimental work.
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work was started by Zeuner31. Later continue by Prandtl’s group32 starting 1904. In
1908 Meyer has extend this work to make two dimensional calculations33. Experimental
work by Parenty34 and others measured the pressure along the converging-diverging
nozzle.

It was commonly believed35 that the choking occurs only at M = 1. The
first one to analyzed that choking occurs at 1/

√
k for isothermal flow was Shapiro

(195x). It is so strange that a giant like Shapiro did not realize his model on isothermal
contradict his conclusion from his own famous paper. Later Romer at el extended it
to isothermal variable area flow (1955). In this book, this author adapts E.R.G. Ecert’s
idea of dimensionless parameters control which determines where the reality lay between
the two extremes. Recently this concept was proposed (not explicitly) by Dutton and
Converdill (1997)36. Namely, in many cases the reality is somewhere between the
adiabatic and the isothermal flow. The actual results will be determined by the modified
Eckert number to which model they are closer.

Nozzle Flow

Fig. -1.3. The measured pressure in a nozzle taken
from Stodola 1927 Steam and Gas Turbines

The first “wind tunnel” was not a tun-
nel but a rotating arm attached at
the center. At the end of the arm
was the object that was under obser-
vation and study. The arm’s circular
motion could reach a velocity above
the speed of sound at its end. Yet,
in 1904 the Wright brothers demon-
strated that results from the wind tun-
nel and spinning arm are different due
to the circular motion. As a result,
the spinning arm was no longer used
in testing. Between the turn of the
century and 1947-48, when the first
supersonic wind tunnel was built, sev-
eral models that explained choking at
the throat have been built.

A different reason to study the converging-diverging nozzle was the Venturi meter

31Zeuner, “Theorie der Turbinen, Leipzig 1899 page 268 f.
32Some of the publications were not named after Prandtl but rather by his students like Meyer,

Theodor. In the literature appeared reference to article by Lorenz in the Physik Zeitshr., as if in 1904.
Perhaps, there are also other works that this author did not come a crossed.

33Meyer, Th., Über zweidimensionals Bewegungsvordange eines Gases, Dissertation 1907, erschienen
in den Mitteilungen über Forsch.-Arb. Ing.-Wes. heft 62, Berlin 1908.

34Parenty, Comptes R. Paris, Vol. 113, 116, 119; Ann. Chim. Phys. Vol. 8. 8 1896, Vol 12, 1897.
35The personal experience of this undersigned shows that even instructors of Gas Dynamics are not

aware that the chocking occurs at different Mach number and depends on the model.
36These researchers demonstrate results between two extremes and actually proposed this idea.

However, that the presentation here suggests that topic should be presented case between two extremes.
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which was used in measuring the flow rate of gases. Bendemann 37 carried experiments
to study the accuracy of these flow meters and he measured and refound that the flow
reaches a critical value (pressure ratio of 0.545) that creates the maximum flow rate.

There are two main models or extremes that describe the flow in the nozzle:
isothermal and adiabatic.

Fig. -1.4. Flow rate as a function of the back pressure taken
after Stodola 1927 Steam and Gas Turbines

Romer et al38 analyzed the
isothermal flow in a nozzle.
It is remarkable that choking
was found as 1/

√
k as op-

posed to one (1). In general
when the model is assumed
to be isothermal the choking
occurs at 1/

√
k. The con-

cept that the choking point
can move from the throat
introduced by39 a researcher
unknown to this author. It
is very interesting that the
isothermal nozzle was pro-
posed by Romer at el 1955
(who was behind the adviser
or the student?). These re-
searchers were the first ones
to realized that choking can
occurs at different Mach number (1/

√
k) other than the isothermal pipe.

Rayleigh Flow

Rayleigh was probably40, the first to suggest a model for frictionless flow with a constant
heat transfer. Rayleigh’s work was during the time when it was debatable as to whether
there are two forms of energies (mechanical, thermal), even though Watt and others
found and proved that they are the same. Therefore, Rayleigh looked at flow without
mechanical energy transfer (friction) but only thermal energy transfer. In Rayleigh
flow, the material reaches choking point due to heat transfer, hence the term “thermally
choked” is used; no additional heat to “flow” can occur.

37Bendemann Mitteil über Forschungsarbeiten, Berlin, 1907, No. 37.
39Romer, I Carl Jr., and Ali Bulent Cambel, “Analysis of Isothermal Variable Area Flow,” Aircraft

Eng. vol. 27 no 322, p. 398 December 1955.
39This undersign didn’t find the actual trace to the source of proposing this effect. However, some

astronomy books showing this effect in a dimensional form without mentioning the original researcher.
In dimensionless form, this phenomenon produces a dimensionless number similar to Ozer number and
therefor the name Ozer number adapted in this book.

40As most of the history research has shown, there is also a possibility that someone found it earlier.
For example, Simeon–Denis Poisson was the first one to realize the shock wave possibility.



12 CHAPTER 1. INTRODUCTION

Fanno Flow

The most important model in compressible flow was suggested by Gino Fanno in his
Master’s thesis (1904). The model bears his name. Yet, according to Dr. Rudolf
Mumenthaler from UTH University (the place where Fanno Studied), no copy of the
thesis can be found in the original University and perhaps only in the personal custody
of the Fanno family41. Fanno attributes the main pressure reduction to friction. Thus,
flow that is dominantly adiabatic could be simplified and analyzed. The friction factor
is the main component in the analysis as Darcy f42 had already proposed in 1845. The
arrival of the Moody diagram, which built on Hunter Rouse’s (194x) work made Darcy–
Weisbach’s equation universally useful. Without the existence of the friction factor
data, the Fanno model wasn’t able to produce a prediction useful for the industry.
Additionally an understating of the supersonic branch of the flow was unknown (The
idea of shock in tube was not raised at that time.). Shapiro organized all the material
in a coherent way and made this model useful.

Meta
Did Fanno realize that the flow is choked? It appears at least in Stodola’s book
that choking was understood in 1927 and even earlier. The choking was as-
sumed only to be in the subsonic flow. But because the actual Fanno’s thesis
is not available, the question cannot be answered yet. When was Gas Dynamics
(compressible flow) as a separate class started? Did the explanation for the com-
bination of diverging-converging nuzzle with tube for Fanno flow first appeared
in Shapiro’s book?

Meta End
Isothermal Flow

The earliest reference to isothermal flow was found in Shapiro’s Book. The model
suggests that the choking occurs at 1/

√
k and it appears that Shapiro was the first one

to realize this difference compared to the other models. In reality, the flow is choked
somewhere between 1/

√
k to one for cases that are between Fanno (adiabatic) and

isothermal flow. This fact was evident in industrial applications where the expectation
of the choking is at Mach one, but can be explained by choking at a lower Mach number.
No experimental evidence, known by the undersigned, was ever produced to verify this
finding.

1.3.4 External flow

When the flow over an external body is about .8 Mach or more the flow must be
considered to be a compressible flow. However at a Mach number above 0.8 (relative
of velocity of the body to upstream velocity) a local Mach number (local velocity) can

41This material is very important and someone should find it and make it available to researchers.
42Fanning f based radius is only one quarter of the Darcy f which is based on diameter
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reach M = 1. At that stage, a shock wave occurs which increases the resistance.
The Navier-Stokes equations which describe the flow (or even Euler equations) were
considered unsolvable during the mid 18xx because of the high complexity. This problem
led to two consequences. Theoreticians tried to simplify the equations and arrive at
approximate solutions representing specific cases. Examples of such work are Hermann
von Helmholtz’s concept of vortex filaments (1858), Lanchester’s concept of circulatory
flow (1894), and the Kutta-Joukowski circulation theory of lift (1906). Practitioners
like the Wright brothers relied upon experimentation to figure out what theory could
not yet tell them.

Ludwig Prandtl in 1904 explained the two most important causes of drag by
introducing the boundary layer theory. Prandtl’s boundary layer theory allowed various
simplifications of the Navier-Stokes equations. Prandtl worked on calculating the effect
of induced drag on lift. He introduced the lifting line theory, which was published in
1918-1919 and enabled accurate calculations of induced drag and its effect on lift43.

During World War I, Prandtl created his thin–airfoil theory that enabled the
calculation of lift for thin, cambered airfoils. He later contributed to the Prandtl-
Glauert rule for subsonic airflow that describes the compressibility effects of air at high
speeds. Prandtl’s student, Von Karman reduced the equations for supersonic flow into
a single equation.

After the First World War aviation became important and in the 1920s a push
of research focused on what was called the compressibility problem. Airplanes could
not yet fly fast, but the propellers (which are also airfoils) did exceed the speed of
sound, especially at the propeller tips, thus exhibiting inefficiency. Frank Caldwell and
Elisha Fales demonstrated in 1918 that at a critical speed (later renamed the critical
Mach number) airfoils suffered dramatic increases in drag and decreases in lift. Later,
Briggs and Dryden showed that the problem was related to the shock wave. Meanwhile
in Germany, one of Prandtl’s assistants, J. Ackeret, simplified the shock equations so
that they became easy to use. After World War Two, the research had continued and
some technical solutions were found. Some of the solutions lead to tedious calcula-
tions which lead to the creation of Computational Fluid Dynamics (CFD). Today these
methods of perturbations and asymptotic are hardly used in wing calculations44. That
is the “dinosaur45” reason that even today some instructors are teaching mostly the
perturbations and asymptotic methods in Gas Dynamics classes.

More information on external flow can be found in , John D. Anderson’s Book
“History of Aerodynamics and Its Impact on Flying Machines,” Cambridge University
Press, 1997.

43The English call this theory the Lanchester–Prandtl theory. This is because the English Astronomer
Frederick Lanchester published the foundation for Prandtl’s theory in his 1907 book Aerodynamics.
However, Prandtl claimed that he was not aware of Lanchester’s model when he had begun his work
in 1911. This claim seems reasonable in the light that Prandtl was not ware of earlier works when he
named erroneously the conditions for the shock wave. See for the full story in the shock section.

44This undersigned is aware of only one case that these methods were really used to calculations of
wing.

45It is like teaching using slide ruler in today school. By the way, slide rule is sold for about 7.5$ on
the net. Yet, there is no reason to teach it in a regular school.
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1.3.5 Filling and Evacuating Gaseous Chambers

It is remarkable that there were so few contributions made in the area of a filling or
evacuation gaseous chamber. The earlier work dealing with this issue was by Giffen,
1940, and was republished by Owczarek, J. A., the model and solution to the nozzle
attached to chamber issue in his book “Fundamentals of Gas Dynamics.”46. He also
extended the model to include the unchoked case. Later several researchers mostly from
the University in Illinois extended this work to isothermal nozzle (choked and unchoked).

The simplest model of nozzle, is not sufficient in many cases and a connection by a
tube (rather just nozzle or orifice) is more appropriated. Since World War II considerable
works have been carried out in this area but with very little progress47. In 1993 the
first reasonable models for forced volume were published by the undersigned. Later,
that model was extended by several research groups, The analytical solution for forced
volume and the “balloon” problem (airbag’s problem) model were published first in this
book (version 0.35) in 2005. The classification of filling or evacuating the chamber as
external control and internal control (mostly by pressure) was described in version 0.3
of this book by this author.

1.3.6 Biographies of Major Figures

Fig. -1.5. Portrait of Galileo Galilei

In this section a short summary of major fig-
ures that influenced the field of gas dynamics is
present. There are many figures that should be in-
cluded and a biased selection was required. Much
information can be obtained from other resources,
such as the Internet. In this section there is no
originality and none should be expected.

Galileo Galilei

Galileo was born in Pisa, Italy on February 15,
1564 to musician Vincenzo Galilei and Giulia degli
Ammannati. The oldest of six children, Galileo
moved with his family in early 1570 to Florence.
Galileo started his studying at the University of
Pisa in 1581. He then became a professor of
mathematics at the University of Padua in 1592. During the time after his study,
he made numerous discoveries such as that of the pendulum clock, (1602). Galileo also
proved that objects fell with the same velocity regardless of their size.

46International Textbook Co., Scranton, Pennsylvania, 1964.
47In fact, the emergence of the CFD gave the illusion that there are solutions at hand, not realizing

that garbage in is garbage out, i.e., the model has to be based on scientific principles and not detached
from reality. As anecdotal story explaining the lack of progress, in die casting conference there was
a discussion and presentation on which turbulence model is suitable for a complete still liquid. Other
“strange” models can be found in the undersigned’s book “Fundamentals of Die Casting Design.
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Galileo had a relationship with Marina Gamba (they never married)ho lived and
worked in his house in Padua, where she bore him three children. However, this relation-
ship did not last and Marina married Giovanni Bartoluzzi and Galileo’s son, Vincenzio,
joined him in Florence (1613).

Galileo invented many mechanical devices such as the pump and the telescope
(1609). His telescopes helped him make many astronomic observations which proved
the Copernican system. Galileo’s observations got him into trouble with the Catholic
Church, however, because of his noble ancestry, the church was not harsh with him.
Galileo was convicted after publishing his book Dialogue, and he was put under house
arrest for the remainder of his life. Galileo died in 1642 in his home outside of Florence.

Ernest Mach (1838-1916)

Fig. -1.6. Photo of Ernest Mach

Ernest Mach was born in 1838 in
Chrlice (now part of Brno), when
Czechia was still a part of the Austro–
Hungary empire. Johann, Mach’s fa-
ther, was a high school teacher who
taught Ernest at home until he was
14, when he studied in Kromeriz Gym-
nasium, before he entered the univer-
sity of Vienna were he studies math-
ematics, physics and philosophy. He
graduated from Vienna in 1860. There
Mach wrote his thesis ”On Electrical
Discharge and Induction.” Mach was
interested also in physiology of sensory
perception.

At first he received a professorship position at Graz in mathematics (1864) and
was then offered a position as a professor of surgery at the university of Salzburg, but he
declined. He then turned to physics, and in 1867 he received a position in the Technical
University in Prague48 where he taught experimental physics for the next 28 years.

Fig. -1.7. The photo of the bullet in a
supersonic flow which was taken by Mach.
Note it was not taken in a wind tunnel

Mach was also a great thinker/philosopher
and influenced the theory of relativity dealing
with frame of reference. In 1863, Ernest Mach
(1836 - 1916) published Die Machanik in which
he formalized this argument. Later, Einstein
was greatly influenced by it, and in 1918, he
named it Mach’s Principle. This was one of
the primary sources of inspiration for Einstein’s
theory of General Relativity.

Mach’s revolutionary experiment demon-

48It is interesting to point out that Prague provided us two of the top influential researchers: E. Mach
and E.R.G. Eckert.
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strated the existence of the shock wave as shown in Figure 1.7. It is amazing that Mach
was able to photograph the phenomenon using the spinning arm technique (no wind
tunnel was available at that time and most definitely nothing that could take a photo
at supersonic speeds. His experiments required exact timing. He was not able to at-
tach the camera to the arm and utilize the remote control (not existent at that time).
Mach’s shadowgraph technique and a related method called Schlieren Photography are
still used today.

Yet, Mach’s contributions to supersonic flow were not limited to experimental
methods alone. Mach understood the basic characteristics of external supersonic flow
where the most important variable affecting the flow is the ratio of the speed of the
flow49 (U) relative to the speed of sound (c). Mach was the first to note the transition
that occurs when the ratio U/c goes from being less than 1 to greater than 1. The
name Mach Number (M) was coined by J. Ackeret (Prandtl’s student) in 1932 in honor
of Mach.

John William Strutt (Lord Rayleigh)

Fig. -1.8. Lord Rayleigh portrait.

A researcher with a wide interest, started studies
in compressible flow mostly from a mathematical
approach. At that time there wasn’t the realiza-
tion that the flow could be choked. It seems that
Rayleigh was the first who realized that flow with
chemical reactions (heat transfer) can be choked.

Lord Rayleigh was a British physicist born
near Maldon, Essex, on November 12, 1842. In
1861 he entered Trinity College at Cambridge,
where he commenced reading mathematics. His
exceptional abilities soon enabled him to overtake
his colleagues. He graduated in the Mathemati-
cal Tripos in 1865 as Senior Wrangler and Smith’s
Prizeman. In 1866 he obtained a fellowship at Trin-
ity which he held until 1871, the year of his mar-
riage. He served for six years as the president of
the government committee on explosives, and from 1896 to 1919 he acted as Scientific
Adviser to Trinity House. He was Lord Lieutenant of Essex from 1892 to 1901.

Lord Rayleigh’s first research was mainly mathematical, concerning optics and
vibrating systems, but his later work ranged over almost the whole field of physics,
covering sound, wave theory, color vision, electrodynamics, electromagnetism, light
scattering, flow of liquids, hydrodynamics, density of gases, viscosity, capillarity, elastic-
ity, and photography. Rayleigh’s later work was concentrated on electric and magnetic
problems. Rayleigh was considered to be an excellent instructor. His Theory of Sound
was published in two volumes during 1877-1878, and his other extensive studies are re-

49Mach dealt with only air, but it is reasonable to assume that he understood that this ratio was
applied to other gases.
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ported in his scientific papers, six volumes issued during 1889-1920. Rayleigh was also
a contributor to the Encyclopedia Britannica. He published 446 papers which, reprinted
in his collected works, clearly show his capacity for understanding everything just a little
more deeply than anyone else. He intervened in debates of the House of Lords only on
rare occasions, never allowing politics to interfere with science. Lord Rayleigh, a Chan-
cellor of Cambridge University, was a Justice of the Peace and the recipient of honorary
science and law degrees. He was a Fellow of the Royal Society (1873) and served as
Secretary from 1885 to 1896, and as President from 1905 to 1908. He received the
Nobel Prize in 1904.

In 1871 he married Evelyn, sister of the future prime minister, the Earl of Balfour
(of the famous Balfour declaration of the Jewish state). They had three sons, the eldest
of whom was to become a professor of physics at the Imperial College of Science and
Technology, London.

As a successor to James Clerk Maxwell, he was head of the Cavendish Laboratory
at Cambridge from 1879-1884, and in 1887 became Professor of Natural Philosophy at
the Royal Institute of Great Britain. Rayleigh died on June 30, 1919 at Witham, Essex.

William John Macquorn Rankine

Fig. -1.9. Portrait of Rankine.

William John Macquorn Rankine (July 2, 1820
- December 24, 1872) was a Scottish engineer
and physicist. He was a founding contributor
to the science of thermodynamics (Rankine Cy-
cle). Rankine developed a theory of the steam
engine. His steam engine manuals were used
for many decades.

Rankine was well rounded interested be-
side the energy field he was also interested
in civil engineering, strength of materials, and
naval engineering in which he was involved in
applying scientific principles to building ships.

Rankine was born in Edinburgh to British
Army lieutenant David Rankine and Barbara
Grahame, Rankine. As Prandtl due health rea-
sons (only his own) Rankine initially had home schooling only later attended public
eduction for a short period of time such as High School of Glasgow (1830). Later his
family to Edinburgh and in 1834 he studied at a Military and Naval Academy. Rankine
help his father who in the management and engineering of the Edinburgh and Dalkeith
Railway. He never graduated from the University of Edinburgh (1838) and continue
to work for Irish railroad for which he developed a technique, later known as Rank-
ine’s method, for laying out railway curves. In 1849 he found the relationship between
saturated vapor pressure and temperature. Later he established relationships between
the temperature, pressure and density of gases, and expressions for the latent heat of
evaporation of a liquid.
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Rankine never married, and his only brother and parents died before him. The
history of Prandtl and Rankine suggest that home school (by a scientist) is much better
than the public school.

Gino Girolamo Fanno

Fig. -1.10. The photo of Gino Fanno ap-
proximately in 1950.

Fanno a Jewish Engineer was born on Novem-
ber 18, 1888. He studied in a technical insti-
tute in Venice and graduated with very high
grades as a mechanical engineer. Fanno was
not as lucky as his brother, who was able to
get into academia. Faced with anti–semitism,
Fanno left Italy for Zurich, Switzerland in 1900
to attend graduate school for his master’s de-
gree. In this new place he was able to pose as
a Roman Catholic, even though for short time
he went to live in a Jewish home, Isaak Baruch
Weil’s family. As were many Jews at that time,
Fanno was fluent in several languages including
Italian, English, German, and French. He likely
had a good knowledge of Yiddish and possibly
some Hebrew. Consequently, he did not have a
problem studying in a different language. In July 1904 he received his diploma (master).
When one of Professor Stodola’s assistants attended military service this temporary po-
sition was offered to Fanno. “Why didn’t a talented guy like Fanno keep or obtain a
position in academia after he published his model?” The answer is tied to the fact that
somehow rumors about his roots began to surface. Additionally, the fact that his model
was not a “smashing50 success” did not help.

Later Fanno had to go back to Italy to find a job in industry. Fanno turned out to
be a good engineer and he later obtained a management position. He married, and like
his brother, Marco, was childless. He obtained a Ph.D. from Regian Istituto Superiore
d’Ingegneria di Genova. However, on February 1939 Fanno was degraded (denounced)
and he lost his Ph.D. (is this the first case in history) because of his Jewish nationality51.
During the War (WWII), he had to be under house arrest to avoid being sent to the
“vacation camps.” To further camouflage himself, Fanno converted to Catholicism.
Apparently, Fanno had a cache of old Italian currency (which was apparently still highly
acceptable) which helped him and his wife survive the war. After the war, Fanno was
only able to work in agriculture and agricultural engineering. Fanno passed way in 1960
without world recognition for his model.

Fanno’s older brother, mentioned earlier Marco Fanno is a famous economist who
later developed fundamentals of the supply and demand theory.

50Missing data about friction factor
51In some places, the ridicules claims that Jews persecuted only because their religion. Clearly, Fanno

was not part of the Jewish religion (see his picture) only his nationality was Jewish.
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Ludwig Prandtl

Fig. -1.11. Photo of Prandtl.

Perhaps Prandtl’s greatest achievement
was his ability to produce so many great
scientists. It is mind boggling to look at
the long list of those who were his students
and colleagues. There is no one who edu-
cated as many great scientists as Prandtl.
Prandtl changed the field of fluid mechan-
ics and is called the modern father of fluid
mechanics because of his introduction of
boundary layer, turbulence mixing theories
etc.

Ludwig Prandtl was born in Freising,
Bavaria, in 1874. His father was a profes-
sor of engineering and his mother suffered
from a lengthy illness. As a result, the
young Ludwig spent more time with his
father which made him interested in his father’s physics and machinery books. This
upbringing fostered the young Prandtl’s interest in science and experimentation.

Prandtl started his studies at the age of 20 in Munich, Germany and he graduated
at the age of 26 with a Ph.D. Interestingly, his Ph.D. was focused on solid mechanics.
His interest changed when, in his first job, he was required to design factory equip-
ment that involved problems related to the field of fluid mechanics (a suction device).
Later he sought and found a job as a professor of mechanics at a technical school in
Hannover, Germany (1901). During this time Prandtl developed his boundary layer
theory and studied supersonic fluid flows through nozzles. In 1904, he presented the
revolutionary paper “Flussigkeitsbewegung Bei Sehr Kleiner Reibung” (Fluid Flow in
Very Little Friction), the paper which describes his boundary layer theory.

His 1904 paper raised Prandtl’s prestige. He became the director of the Institute
for Technical Physics at the University of Göttingen. He developed the Prandtl-Glauert
rule for subsonic airflow. Prandtl, with his student Theodor Meyer, developed the first
theory for calculating the properties of shock and expansion waves in supersonic flow in
1908 (two chapters in this book). As a byproduct they produced the theory for oblique
shock. In 1925 Prandtl became the director of the Kaiser Wilhelm Institute for Flow
Investigation at Göttingen. By the 1930s, he was known worldwide as the leader in the
science of fluid dynamics. Prandtl also contributed to research in many areas, such as
meteorology and structural mechanics.

Ludwig Prandtl worked at Göttingen until his death on August 15, 1953. His work
and achievements in fluid dynamics resulted in equations that simplified understanding,
and many are still used today. Therefore many referred to him as the father of modern
fluid mechanics. Ludwig Prandtl died in Göttingen, Germany on August 15th 1953.

Prandtl’s other contributions include: the introduction of the Prandtl number
in fluid mechanics, airfoils and wing theory (including theories of aerodynamic inter-
ference, wing-fuselage, wing-propeller, biplane, etc); fundamental studies in the wind
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tunnel, high speed flow (correction formula for subsonic compressible flows), theory of
turbulence. His name is linked to the following:

� Prandtl number (heat transfer problems)

� Prandtl-Glauert compressibility correction

� Prandtl’s boundary layer equation

� Prandtl’s lifting line theory

� Prandtl’s law of friction for smooth pipes

� Prandtl-Meyer expansion fans (supersonic flow)

� Prandtl’s Mixing Length Concept (theory of turbulence)

Theodor Meyer

Fig. -1.12. Thedor Meyer’s photo.

Meyer52 was Prandtl’s student who in one
dissertation was able to build large part of
base of the modern compressible flow. The
two chapters in this book, Prandtl–Meyer
flow and oblique shock are directly based
on his ideas. Settles et al in their paper
argues that this thesis is the most influen-
tial dissertation in the entire field of fluid
mechanics. No matter if you accept this
opinion, it must be the most fundamen-
tal thesis or work in the field of compress-
ible flow (about 20.08% page wise of this
book.).

One of the questions that one can
ask, what is about Meyer’s education that
brought this success. In his family, he was
described as math genius who astonished
his surroundings. What is so striking is the
list of his instructors who include Frobenius (Group theory), Helmert (theory of errors),
Hettner (chorology), Knoblauch , Lehmann-Filhes (orbit of double star), Edmund Lan-
dau (number theory), F. Schottkyand (elliptic, abelian, and theta functions and invented
Schottky groups), mathematicians Caratheodory (calculus of variations, and measure
theory), Herglotz (seismology), Hilbert, Klein, Lexis, Runge (Runge–Kutta method) and
Zermelo (axiomatic set theory), Abraham (electron), Minkowski (mathematical base for

52This author is grateful to Dr. Settles and colleagues who wrote a very informative article about
Meyer as a 100 years anniversary to his thesis. The material in this section was taken from Settles, G.
S.,et al. “Theodor Meyer–Lost pioneer of gas dynamics” Prog. Aero space Sci(2009), doi:10.1016 j.
paerosci.2009.06.001. More information can be found in that article.
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theory of relativity), Prandtl, and more. This list demonstrates that Meyer had the best
education one can have at the turn of century. It also suggest that moving between
good universities (3 universities) is a good way to absorb knowledge and good research
skills. This kind of education provided Meyer with the tools to tackle the tough job of
compressible flow.

Fig. -1.13. The diagram is taken from Meyer’s
dissertation showing the schematic of oblique
shock and the schematic of Prandtl–Meyer fan.

What is interesting about his work
is that Mach number concept was not
clear at that stage. Thus, the calcula-
tions (many hand numerical calculations)
were complicated by this fact which fur-
ther can magnify his achievement. Even
though the calculations where carried out
in a narrow range. Meyer’s thesis is only 46
pages long but it include experimental evi-
dence to prove his theory in Prandtl–Meyer
function and oblique shock. According to
Settles, this work utilized Schlieren images
getting quantitative measurements proba-
bly for the first time. Meyer also was the
first one to look at the ratio of the static
properties to the stagnation proprieties53.

Ackeret attributed the oblique shock
theory to Meyer but later this attribution
was dropped and very few books attribute this Meyer ( or even Prandtl). Among the
very few who got this right is this book. The name Prandtl–Meyer is used because some
believe that Prandtl conceived the concept and let Meyer to do the actual work. This
contribution is to the mythical Prandtl ability to “solve” equations without doing the
math. However, it is not clear that Prandtl indeed conceived or dealt with this issues
besides reviewing Meyer ideas. What it is clear that the rigor mathematics is of Meyers
and physical intuition of Prandtl were present. There is also a question of who came
out with the “method of characteristics,” Prandtl or Meyer.

Meyer was the first individual to use the shock polar diagram. Due to his diagram,
he was able to see the existence of the weak and strong shock. Only in 1950, Thomson
was able to see the third shock. It is not clear why Meyer missed the third root. Perhaps,
it was Prandtl influence because he saw only two solutions in the experimental setting
thus suggesting that only two solutions exists. This suggestion perhaps provides an
additional indication that Prandtl was involved heavily in Meyer’s thesis. Meyer also
noticed that the deflection angle has a maximum.

Meyer was born to Theodor Meyer (the same name as his father) in July 1st, 1882,
and die March 8th, 1972. Like Fanno, Meyer never was recognized for his contributions
to fluid mechanics. During the years after Second World War, he was aware that his
thesis became a standard material in every university in world. However, he never told

53This issue is considered still open by this author. It is not clear who use first and coin the term
stagnation properties.
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his great achievements to his neighbors or his family or colleagues in the high school
where he was teaching. One can only wonder why this field rejects very talented people.
Meyer used the symbol v which is still used to this today for the function.

E.R.G. Eckert

Fig. -1.14. The photo of Ernst Rudolf George
Eckert with Bar-Meir’s family Aug 1997

Eckert was born in September 13, 1904 in
Prague, where he studied at the German
Institute of Technology. He received his
engineer deploma in 1927, and defend his
(engineering sciences) Ph.D. in 1931. He
work mostly on radtion for a while in the
same pace where he studied. He went to
work with Schmidt in Danzig known for ex-
perimatal experts in exsact messurement.
That was the time that he develop the un-
derstading dimensional analysis in the heat
transfer in particular and fluid mechanics
in general education must be taught. He was critized for using and teaching dimen-
sional analysis. During World War II, he developed methods for jet engine turbine blade
cooling so they wouldn’t burn up in space. He emigrated to the United States after
the war, and served as a consultant to the U.S. Air Force and the National Advisory
Committee for Aeronautics before coming to Minnesota.

Eckert developed the understanding of heat dissipation in relation to kinetic en-
ergy, especially in compressible flow. Hence, the dimensionless group has been desig-
nated as the Eckert number, which is associated with the Mach number. Schlichting
suggested this dimensionless group in honor of Eckert. In addition to being named to
the National Academy of Engineering in 1970, he authored more than 500 articles and
received several medals for his contributions to science. His book ”Introduction to the
Transfer of Heat and Mass,” published in 1937, is still considered a fundamental text
in the field.

Eckert was an excellent mentor to many researchers (including this author), and
he had a reputation for being warm and kindly. He was also a leading figure in bringing
together engineering in the East and West during the Cold War years.

Ascher Shapiro

MIT Professor Ascher Shapiro54, the Eckert equivalent for the compressible flow, was
instrumental in using his two volume book “The Dynamics of Thermodynamics of
the Compressible Fluid Flow,” to transform the gas dynamics field to a coherent text
material for engineers. Furthermore, Shapiro’s knowledge of fluid mechanics enabled
him to “sew” the missing parts of the Fanno line with Moody’s diagram to create the
most useful model in compressible flow. While Shapiro viewed gas dynamics mostly

54Parts taken from Sasha Brown, MIT
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through aeronautic eyes, the undersigned believes that Shapiro was the first one to
propose an isothermal flow model that is not part of the aeronautic field. Therefore it
is being proposed to call this model Shapiro’s Flow.

In his first 25 years Shapiro focused primarily on power production, high-speed
flight, turbomachinery and propulsion by jet engines and rockets. Unfortunately for the
field of Gas Dynamics, Shapiro moved to the field of biomedical engineering where he
was able to pioneer new work. Shapiro was instrumental in the treatment of blood
clots, asthma, emphysema and glaucoma.

Shapiro grew up in New York City and received his S.B. in 1938 and the Sc.D.
(It is M.I.T.’s equivalent of a Ph.D. degree) in 1946 in mechanical engineering from
MIT. He was assistant professor in 1943, three years before receiving his Sc.D. In 1965
he became the Department of Mechanical Engineering head until 1974. Shapiro spent
most of his active years at MIT. Ascher Shapiro passed way in November 2004.

Von Karman, Theodor

A brilliant scientist who was instrumental in constructing many of the equations and
building the American aviation and space exploration. Von Karman studied fluid me-
chanics under Prandtl and during that time he saw another graduate student that was
attempting to build “stable” experiment what will not have the vortexes. Von Karman
recognized that this situation is inherently unstable and explained the scientific reasons
for this phenomenon. Now this phenomenon known as Von Karman street. Among his
achievement that every student study fluid mechanics is the development of the integral
equation of boundary layer. Von Karman, a descendant of a famous Rabi Rabbi Judah
Loew ben Bezalel (HaMaharl) was born raised in Hungary. Later he move to Germany
to study under Prandtl. After his graduation he taught at Gottingen and later as direc-
tor of the Aeronautical Institute at RWTH Aachen. As a Jew realized that he has to
leave Germany during the raise of the Nazi. At 1930 he received offer and accept the
directorship of a Laboratory at the California Institute of Technology.

His achievement in the area of compressible flow area focused around supersonic
and rocketry. For example, he formulate the slender body equations to describe the
fluid field around rockets. Any modern air plane exhibits the swept–back wings the Von
Karman was instrumental in recognizing its importance. He construct with his student
the Von Karman–Tsien compressibility correction. The Karman–Tsien compressibility
correction is a nonlinear approximation for Mach number effects which works quite well
when the velocities are subsonic. This expression relates the incompressible values to
those in compressible flow. As his adviser, he left many students which have continued
his legacy like Tsien who build the Chinese missile industry.

Zeldovich, Yakov Borisovich

“Before I meet you here I had thought, that you are a collective of authors, as Burbaki”
Stephen W. Hawking.

The statement of Hawking perhaps can illustrate a prolific physicist born in Minsk.
He played an important role in the development of Soviet nuclear and thermonuclear
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weapons. His main contribution in the area compressible flow centered around the shock
wave and detonation and material related to cosmotology. Zeldovich develop several
reatlition for the limiting cases still in use today. For example he developed the ZND
detonation model (where the leter “Z” stands for Zeldovich).



CHAPTER 2

Review of Thermodynamics

In this chapter, a review of several definitions of common thermodynamics terms is
presented. This introduction is provided to bring the student back to current place with
the material.

2.1 Basic Definitions
The following basic definitions are common to thermodynamics and will be used in this
book.

Work

In mechanics, the work was defined as

mechanical work =
∫

F • d` =
∫

PdV (2.1)

This definition can be expanded to include two issues. The first issue that must
be addressed, that work done on the surroundings by the system boundaries similarly is
positive. Two, there is a transfer of energy so that its effect can cause work. It must
be noted that electrical current is a work while heat transfer isn’t.

System

This term will be used in this book and it is defined as a continuous (at least
partially) fixed quantity of matter. The dimensions of this material can be changed.
In this definition, it is assumed that the system speed is significantly lower than that
of the speed of light. So, the mass can be assumed constant even though the true
conservation law applied to the combination of mass energy (see Einstein’s law). In
fact for almost all engineering purpose this law is reduced to two separate laws of mass
conservation and energy conservation.

25
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Our system can receive energy, work, etc as long the mass remain constant the
definition is not broken.

Thermodynamics First Law
This law refers to conservation of energy in a non accelerating system. Since all

the systems can be calculated in a non accelerating systems, the conservation is applied
to all systems. The statement describing the law is the following.

Q12 −W12 = E2 − E1 (2.2)

The system energy is a state property. From the first law it directly implies that
for process without heat transfer (adiabatic process) the following is true

W12 = E1 − E2 (2.3)

Interesting results of equation (2.3) is that the way the work is done and/or intermediate
states are irrelevant to final results. There are several definitions/separations of the kind
of works and they include kinetic energy, potential energy (gravity), chemical potential,
and electrical energy, etc. The internal energy is the energy that depends on the
other properties of the system. For example for pure/homogeneous and simple gases it
depends on two properties like temperature and pressure. The internal energy is denoted
in this book as EU and it will be treated as a state property.

The potential energy of the system is depended on the body force. A common
body force is the gravity. For such body force, the potential energy is mgz where g is
the gravity force (acceleration), m is the mass and the z is the vertical height from a
datum. The kinetic energy is

K.E. =
mU2

2
(2.4)

Thus, the energy equation can be written as

mU1
2

2
+ mg z1 + EU 1 + Q =

mU2
2

2
+ mg z2 + EU 2 + W

System Energy Conservation

(2.5)

For the unit mass of the system equation (2.5) is transformed into

U1
2

2
+ gz1 + Eu1 + q =

U2
2

2
+ gz2 + Eu2 + w

System Energy Conservation per Unit

(2.6)

where q is the energy per unit mass and w is the work per unit mass. The “new”
internal energy, Eu, is the internal energy per unit mass.
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Since the above equations are true between arbitrary points, choosing any point in
time will make it correct. Thus differentiating the energy equation with respect to time
yields the rate of change energy equation. The rate of change of the energy transfer is

DQ

Dt
= Q̇ (2.7)

In the same manner, the work change rate transferred through the boundaries of the
system is

DW

Dt
= Ẇ (2.8)

Since the system is with a fixed mass, the rate energy equation is

Q̇− Ẇ =
D EU

Dt
+ mU

DU

Dt
+ m

D Bf z

Dt
(2.9)

For the case were the body force, Bf , is constant with time like in the case of gravity
equation (2.9) reduced to

Q̇− Ẇ =
D EU

Dt
+ mU

DU

Dt
+ mg

D z

Dt

System Energy Conservation per Time

(2.10)

The time derivative operator, D/Dt is used instead of the common notation
because it referred to system property derivative.

Thermodynamics Second Law

There are several definitions of the second law. No matter which definition is
used to describe the second law it will end in a mathematical form. The most common
mathematical form is Clausius inequality which state that

∮
δQ

T
≥ 0 (2.11)

The integration symbol with the circle represent integral of cycle (therefor circle) in
with system return to the same condition. If there is no lost, it is referred as a reversible
process and the inequality change to equality.

∮
δQ

T
= 0 (2.12)

The last integral can go though several states. These states are independent of the
path the system goes through. Hence, the integral is independent of the path. This
observation leads to the definition of entropy and designated as S and the derivative of
entropy is

ds ≡
(

δQ

T

)

rev
(2.13)



28 CHAPTER 2. REVIEW OF THERMODYNAMICS

Performing integration between two states results in

S2 − S1 =
∫ 2

1

(
δQ

T

)

rev
=

∫ 2

1

dS (2.14)

One of the conclusions that can be drawn from this analysis is for reversible and
adiabatic process dS = 0. Thus, the process in which it is reversible and adiabatic, the
entropy remains constant and referred to as It can be noted that there is a possibility
that a process can be irreversible and the right amount of heat transfer to have zero
change entropy change. Thus, the reverse conclusion that zero change of entropy leads
to reversible process, isn’t correct.

For reversible process equation (2.12) can be written as

δQ = T dS (2.15)

and the work that the system is doing on the surroundings is

δW = P dV (2.16)

Substituting equations (2.15) (2.16) into (2.10) results in

TdS = dEU + P dV (2.17)

Even though the derivation of the above equations were done assuming that
there is no change of kinetic or potential energy, it still remain valid for all situations.
Furthermore, it can be shown that it is valid for reversible and irreversible processes.

Enthalpy

It is a common practice to define a new property, which is the combination of
already defined properties, the enthalpy of the system.

H = EU + P V (2.18)

The specific enthalpy is enthalpy per unit mass and denoted as, h.
Or in a differential form as

dH = dEU + dP V + P dV (2.19)

Combining equations (2.18) the (2.17) yields

T dS = dH − V dP

Fundamental Entropy

(2.20)

For isentropic process, equation (2.17) is reduced to dH = V dP . The equation (2.17)
in mass unit is

T ds = du + P dv = dh− dP

ρ
(2.21)
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when the density enters through the relationship of ρ = 1/v.

Specific Heats

The change of internal energy and enthalpy requires new definitions. The first
change of the internal energy and it is defined as the following

Cv ≡
(

∂Eu

∂T

)
Volume Specific Heat

(2.22)

And since the change of the enthalpy involve some kind of work is defined as

Cp ≡
(

∂h

∂T

)
Pressure Specific Heat

(2.23)

The ratio between the specific pressure heat and the specific volume heat is called
the ratio of the specific heat and it is denoted as, k.

k ≡ Cp

Cv

Specific Heat Ratio

(2.24)

For solid, the ratio of the specific heats is almost 1 and therefore the difference
between them is almost zero. Commonly the difference for solid is ignored and both are
assumed to be the same and therefore referred as C. This approximation less strong
for liquid but not by that much and in most cases it applied to the calculations. The
ratio the specific heat of gases is larger than one.

Equation of State

Equation of state is a relation between state variables. Normally the relationship
of temperature, pressure, and specific volume define the equation of state for gases.
The simplest equation of state referred to as ideal gas. and it is defined as

P = ρR T (2.25)

Application of Avogadro’s law, that ”all gases at the same pressures and temperatures
have the same number of molecules per unit of volume,” allows the calculation of a
“universal gas constant.” This constant to match the standard units results in

R̄ = 8.3145
kj

kmol K
(2.26)
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Thus, the specific gas can be calculate as

R =
R̄

M
(2.27)

The specific constants for select gas at 300K is provided in table 2.1.

Table -2.1. Properties of Various Ideal Gases at [300K]

Gas Chemical
Formula

Molecular
Weight

R
[

kJ
Kg K

]
CP

[
kJ

KgK

]
Cv

[
kJ

KgK

]
k

Air - 28.970 0.28700 1.0035 0.7165 1.400

Argon Ar 39.948 0.20813 0.5203 0.3122 1.667

Butane C4H10 58.124 0.14304 1.7164 1.5734 1.091

Carbon
Dioxide

CO2 44.01 0.18892 0.8418 0.6529 1.289

Carbon
Monoxide

CO 28.01 0.29683 1.0413 0.7445 1.400

Ethane C2H6 30.07 0.27650 1.7662 1.4897 1.186

Ethylene C2H4 28.054 0.29637 1.5482 1.2518 1.237

Helium He 4.003 2.07703 5.1926 3.1156 1.667

Hydrogen H2 2.016 4.12418 14.2091 10.0849 1.409

Methane CH4 16.04 0.51835 2.2537 1.7354 1.299

Neon Ne 20.183 0.41195 1.0299 0.6179 1.667

Nitrogen N2 28.013 0.29680 1.0416 0.7448 1.400

Octane C8H18 114.230 0.07279 1.7113 1.6385 1.044

Oxygen O2 31.999 0.25983 0.9216 0.6618 1.393

Propane C3H8 44.097 0.18855 1.6794 1.4909 1.126

Steam H2O 18.015 0.46153 1.8723 1.4108 1.327

From equation of state (2.25) for perfect gas, it follows

d(P v) = R dT (2.28)
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For perfect gas

dh = dEu + d(Pv) = dEu + d(R T ) = f(T ) (only) (2.29)

From the definition of enthalpy it follows that

d(Pv) = dh− dEu (2.30)

Utilizing equation (2.28) and subsisting into equation (2.30) and dividing by dT yields

Cp − Cv = R (2.31)

This relationship is valid only for ideal/perfect gases.
The ratio of the specific heats can be expressed in several forms as

Cv =
R

k − 1

Cv =f(R)

(2.32)

and

Cp =
k R

k − 1

Cp =f(R)

(2.33)

The specific heat ratio, k value ranges from unity to about 1.667. These values depend
on the molecular degrees of freedom (more explanation can be obtained in Van Wylen
“F. of Classical thermodynamics.” The values of several gases can be approximated as
ideal gas and are provided in Table (2.1).

The entropy for ideal gas can be simplified as the following

s2 − s1 =
∫ 2

1

(
dh

T
− dP

ρT

)
(2.34)

Using the identities developed so far one can find that

s2 − s1 =
∫ 2

1

Cp
dT

T
−

∫ 2

1

R dP

P
= Cp ln

T2

T1
−R ln

P2

P1
(2.35)

Or using specific heat ratio equation (2.35) transformed into

s2 − s1

R
=

k

k − 1
ln

T2

T1
− ln

P2

P1
(2.36)

For isentropic process, ∆s = 0, the following is obtained

ln
T2

T1
= ln

(
P2

P1

)k−1
k

(2.37)
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There are several famous identities that results from equation (2.37) as

ρ2

ρ1
=

(
T2

T1

) 1
k−1

=
(

P2

P1

) 1
k

=
(

V1

V2

)

T2

T1
=

(
P2

P1

)k−1
k

=
(

ρ2

ρ1

)k−1

=
(

V1

V2

)(k−1)

P2

P1
=

(
T2

T1

) k
k−1

=
(

ρ2

ρ1

)k

=
(

V1

V2

)k

V2

V1
=

(
T1

T2

) 1
k−1

=
(

ρ1

ρ2

)
=

(
P1

P2

) 1
k

Isentropic Relationship

(2.38)

The ideal gas model is a simplified version of the real behavior of real gas. The
real gas has a correction factor to account for the deviations from the ideal gas model.
This correction factor referred as the compressibility factor and defined as

Z =
Vactual

Videal gas
=

P v

R T
=

P

ρR T

Compressibility Factor

(2.39)

One of the common way to estimate the compressibility factor (is by using or based on
Redlick-Kwong Equation. In this method the equation of state is

P =
R T

Vm −B
− A√

T Vm (Vm + B)
(2.40)

where the Vm is the molar volume, A is a coefficient accounting for attractive potential
of molecules, and B is a coefficient that accounting for volume correction.

The coefficients are a function of gas. These coefficients can be estimated using
the critical point of the gas

A =
0.4275 R2 Tc

2.5

Pc
, B =

0.08664 R Tc

Pc
(2.41)

where: Tc is the critical temperature, and Pc is the critical pressure.

Expressing1 the volume as a faction of the other parameters in equation (2.39)
and then substituting into equation (2.40) transfomred it into cubic equation of Z as

Z3 − Z2 − η1 Z − η2 = 0 (2.42)

1This idea was suggested by Cultip and Shacham
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where

φ1 = 0.42747

(
Pr

Tr

5
2

)
(2.43)

φ2 = 0.08664
(

Pr

Tr

)
(2.44)

η1 = φ2
2 + φ2 − φ1 η2 = φ1 φ2 (2.45)

Z can be solve analytically and will be presented in a Figure.

2.1.1 Maximum Work of Expansion Process

VA

Piston

ρA

PA

mA

TA

LA

VB

Piston

ρB

PB

mB

TB

LB

Fig. -2.1. Cylinder and piston configuration of maximum
work.

In some industries, such as the
printing, there is a need to obtain
a high temperature for a short
time (to back the paper) and later
the paper has to be cooled to a
room temperature. On the other
hand, when one want to absorb
the car energy during the stop-
ping process and reuse it later
leads to a theoretical question.
This question what is the mini-
mum work to compress substance
or maximum work or energy that
can be obtained from substance
undergoes change of the condi-
tion.. The compressibility has a
significant effect on the work that
can be obtained or required in a
piston cylinder configuration and others configurations. For example, a shock tube is a
device which used to obtain high temperature to study explosions and potentially has
civilian applications. What is the minimum energy or work which required to compress
a piston from state AAA to state BBB. Clearly, the compression has to occur in an isentropic
process. The equation of state has to be specified to have a specific equation describing
the situation. The simplest equation is the ideal gas model. The general case has three
dimensions and requires a complex mathematical treatment. To simplify the discussion,
it is assumed that the process occurs in an one dimensional case.

Perfect Gas

The gas confined by a cylinder and piston undergoes isentropic process during
expansion. First the analysis will be discussed for the case of perfect gas. Every stage
of the process is denoted by x and LB > x > LA. The mass conservation (mA = m(x))
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and assuming perfect gas model is

PA VA

TA¡R
=

P (x)V (x)
T (x)¡R

=⇒ P (x) = PA
T (x)

½A LA︷︸︸︷
VA

TA V (x)︸ ︷︷ ︸
½A (LA+x)

= PA
T (x)LA

TA (LA + x)
(2.46)

Using the isentropic relationship during the process see equation table (2.38) apply,

P (x) = PA

(
VA

V (x)

)k

(2.47)

It can be noticed that the area can be canceled (see equation (2.46) for similar expla-
nation) and the isentropic relationship can be described by

P(x) = PA

(
LA

LA + x

)k

(2.48)

Dimensional analysis2 can be used to minimize the labor and introducing a dimensionless
variable

ξ = x/LA (2.49)

By introducing this variable, it is acknowledged that this dimensionless parameter is
effecting the solution of the problem. The work done by the gas on the piston is

WA→B =
∫ LB−LA

0

F (x)︷ ︸︸ ︷
AP (x) dx (2.50)

Equation (2.50) by area, A, which is a constant and substituting equation (2.48) yields

WA→B

A
=

∫ LB−LA

0

PA1

(
LA

(LA + x)

)k
LA dx

LA
(2.51)

Equation (2.51) can be transformed into a dimensionless form when dividing by Pressure
and length. Also notice the integration limits change as following

WA→B

ALA PA
=

∫ LB−LA

0

(
½½LA (1)

½½LA(1 + ξ)

)k

dξ =
∫ LB

LA
−1

0

(
1

1 + ξ

)k

dξ (2.52)

Carrying the integration of equation (2.52) yields

WA→B

AL PA1
=

(1 + ξ)1−k

1− k

∣∣∣∣∣

LB
LA

−1

0

(2.53)

WA→B

AL PA1
=

1
k − 1

[
1−

(
LB
LA

)1−k
]

(2.54)

2“Basics of Fluid Mechanics” by Bar-Meir has extensive discussion about this point.
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Fig. -2.2. Dimensionless work available in a cylinder piston configuration.

2.2 The Velocity–Temperature Diagram
The velocity–temperature (U–T) diagram was developed by Stodola (1934) and ex-
pended by Spalding (1954). In the U–T diagram, the logarithms of temperature is
plotted as a function of the logarithms of velocity. For simplicity, the diagram here
deals with perfect gas only (constant specific heat)3. The ideal gas equation (2.25) was
described before. This diagram provides a graphical way to analysis the flow and to
study the compressible flow because two properties defines the state.

The enthalpy is a linear function of the temperature due to the assumptions
employed here (the pressure does not affect the enthalpy). The energy equation (2.18)
can be written for adiabatic process as

h +
U2

2
= constant1 (2.55)

Taking the logarithms of both sides of equation (2.55) results in

log
(

h +
U2

2

)
= constant2 (2.56)

or

log
(

T +
U2

2 Cp

)
= constant3 (2.57)

3The perfect gas model is used because it provides also the trends of more complicated model.
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Example 2.1:
Determine the relationship between constant3 in equation (2.57) to constant1 in equa-
tion 2.55.

Solution

Under construction
End Solution

From equation (2.56), it can be observed as long as the velocity square is relatively
small compared to multiplication of the specific heat by the temperature, it remains close
to constant. Around U2 = 2Cp T the velocity drops rapidly. These lines are referred
to as energy lines because kinetic energy and thermal remain constant. These lines are
drawn in Figure 2.3(b).
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Temperature diagrams

Fig. -2.3. caption

The sonic line (the speed of sound will be discussed in Chapter 4) is a line that
given by the following equation

U = c =
√

kRT → ln c =
1
2

log (kRT ) (2.58)

The reason that logarithms scales are used is so that the relative speed (U/c also
known as Mach number, will be discussed page 86) for any point on the diagram, can
be directly measured. For example, the Mach number of point A, shown in Figure
2.3(a), is obtained by measuring the distance A−B. The distance A−B represent
the ratio of the speed of sound because

A−B = log U |A − log c|B = log
U |A
c

(2.59)

For example, when copying the distance A−B to the logarithms scale results in Mach
number. For instance, copying the distance to starting point of 100, the Mach number
at point A will be the read number from the scale divided by 1000.
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Mass conservation reads

ṁ

A
= U ρ (2.60)

Subsisting the equation of state (2.25) into equation (2.60) results in

ṁR

AP
=

U

T
(2.61)

Taking the logarithms from both sides results in

log
(

ṁR

AP

)
= log

(
U

T

)
(2.62)

After rearrangement of equation (2.62) obtain

log
(

ṁR

AP

)
= log U − log T (2.63)

or

log T = log U − log
(

ṁR

A P

)
(2.64)

Figure 2.3(b) depicts these lines which referred to as the pressure (mass flow rate) lines.
For constant mass flow and pressure, log T is linearly depend on log U . In fact, for
constant value of log ṁ R

A P the pressure line is at 45◦ on diagram.
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Fig. -2.4. The ln temperature versus of the velocity diagram

The constant momentum can be written as

P +
U2

ρ
= constant = P0 (2.65)
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Where P0 is the pressure if the velocity was zero. It can be observed that from perfect
gas model and continuing equation the following is obtained

P =
ṁR T

U A
(2.66)

Utilizing the perfect gas state equation and equation (2.66) and substituting into
equation (2.65) yields

ṁR T

U A
+

ṁU2

AU
= P0 (2.67)

Or in simplified form

T = − U2

2 R
+

P0 AU

ṁR
(2.68)

The temperature is upside down parabola in relationship to velocity on the momentum
lines.

log T = log
(
− U2

2 R
+

P0 AU

ṁR

)
(2.69)

These line also called Stodola lines or Rayleigh lines.
The maximum of the temperature on the momentum line can be calculate by

taking the derivative and equating to zero.

dT

dU
= −2 U

2 R
+

P0 A

ṁR
= (2.70)

The maximum temperature is then

U =
P0 A

ṁ
(2.71)

It can be shown that this velocity is related to
√

kT0 where the T0 is the velocity zero.



CHAPTER 3

Basic of Fluid Mechanics

3.1 Introduction

The reader is expected to be familiar with the fundamentals of fluid mechanics and
this review is provided as refreshment. These basic principles and concepts are to be
use in the book and are a building blocks of the understanding the material presented
later. Several concepts are reviewed such as control volume. Several applications of the
fluid mechanics will demonstrated. First, a discussion about fluid proprieties (related
to compressible flow) is presented. The integral and differential methods are described.
Later, a discussion about the governing equations in fluid mechanics is presented.

3.2 Fluid Properties

3.2.1 Kinds of Fluids

Some differentiate fluids from solid by the reaction to shear stress. Generally it is
accepted that the fluid continuously and permanently deformed under shear stress while
solid exhibits a finite deformation which does not change with time. It is also said that
the liquid cannot return to their original state after the deformation. This differentiation
leads to three groups of materials: solids and fluids and those between these two limits.
This test creates a new material group that shows dual behaviors; under certain limits;
it behaves like solid and under others it behaves like fluid. This book deals with only
clear fluid (at least, this is the intention at this stage). The fluid is mainly divided into
two categories: liquids and gases. The main difference between the liquids and gases
state is that gas will occupy the whole volume while liquids has an almost fix volume.
This difference can be, for most practical purposes considered sharper.

39
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Density

The density is the main property which causes the field of compressible flow. The
density is a property which requires that the fluid to be continuous. The density can
be changed and it is a function of time and space (location) but must be continues.
It doesn’t mean that a sharp and abrupt change in fields cannot occur. The continues
requirement is referred to the fact that density is independent of the sampling size.
After certain sampling size, the density remains constant. Thus, the density is defined
as

ρ = lim
∆V−→ε

∆m

∆V
(3.1)

It must be noted that ε is chosen so that the continuous assumption is not broken,
that is, it did not reach/reduced to the size where the atoms or molecular statistical
calculations are significant.

3.2.2 Viscosity

The shear stress is part of the pressure tensor. This book deals with Newtonian fluid
and hence, applying the linear relationship can be written for the shear stress

τxy = µ
dU

dy
(3.2)

Where µ is called the absolute viscosity or dynamic viscosity. Newtonian fluids are fluids
which the ratio is constant. Many fluids fall into this category such as air, water etc.
This approximation is appropriate for many other fluids but only within some ranges.

Equation (3.2) can be interpreted as momentum in the x direction transferred
into the y direction. Thus, the viscosity is the resistance to the flow (flux) or the
movement. The property of viscosity, which is exhibited by all fluids, is due to the
existence of cohesion and interaction between fluid molecules. These cohesions and
interactions hamper the flux in y–direction. Some referred to shear stress as viscous
flux of x–momentum in the y–direction. The units of shear stress are the same as flux
per time as following

F

A

[
kg m

sec2

1
m2

]
=

ṁU

A

[
kg

sec

m

sec

1
m2

]

Thus, the notation of τxy is easier to understand and visualize. In fact, this interpretation
is more suitable to explain the molecular mechanism of the viscosity. The units of
absolute viscosity are [N sec/m2].

Viscosity varies widely with temperature. However, temperature variation has
an opposite effect on the viscosities of liquids and gases. The difference is due to
their fundamentally different mechanism creating viscosity characteristics. In gases,
molecules are sparse and cohesion is negligible, while in the liquids, the molecules
are more compact and cohesion is more dominate. Thus, in gases, the exchange of
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momentum between layers brought as a result of molecular movement normal to the
general direction of flow, and it resists the flow. This molecular activity is known to
increase with temperature, thus, the viscosity of gases will increase with temperature.
This reasoning is a result of the considerations of the kinetic theory. This theory
indicates that gas viscosities vary directly with the square root of temperature. In
liquids, the momentum exchange due to molecular movement is small compared to the
cohesive forces between the molecules. Thus, the viscosity is primarily dependent on the
magnitude of these cohesive forces. Since these forces decrease rapidly with increases
of temperature, liquid viscosities decrease as temperature increases.

Well above the critical point (two phase dome), both phases are only a function
of the temperature. On the liquid side below the critical point, the pressure has minor
effect on the viscosity. It must be stress that the viscosity in the dome is meaningless.
There is no such a thing of viscosity at 30% liquid. It simply depends on the structure
of the flow see for more detail in “Basic of Fluid Mechamics, Bar–Meir” in the chapter
on multi phase flow. Oils have the greatest increase of viscosity with pressure which is
a good thing for many engineering purposes.

3.2.3 Kinematic Viscosity

The kinematic viscosity is another way to look at the viscosity. The reason for this
new definition is that some experimental data are given in this form. These results
also explained better using the new definition. The kinematic viscosity embraces both
the viscosity and density properties of a fluid. The above equation shows that the
dimensions of ν to be square meter per second, [m2/sec], which are acceleration units
(a combination of kinematic terms). This fact explains the name “kinematic” viscosity.
The kinematic viscosity is defined as

ν =
µ

ρ
(3.3)

The gas density decreases with the temperature. However, The increase of the
absolute viscosity with the temperature is enough to overcome the increase of density
and thus, the kinematic viscosity also increase with the temperature for many materials.

3.2.4 Bulk Modulus

Similar to solids (hook’s law), fluids have a property that describes the volume change as
results of pressure change for constant temperature. It can be noted that this property
is not the result of the equation of state but related to it. Bulk modulus is usually
obtained from experimental or theoretical or semi theoretical methods.

The bulk modulus is defined as

BT = −v

(
∂P

∂v

)

T

(3.4)
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Using the identity of v = 1/ρ transfers equation (3.4) into

BT = ρ

(
∂P

∂ρ

)

T

(3.5)

The bulk modulus for several selected liquids is presented in Table 3.1.

Table -3.1. The bulk modulus for selected material with the critical temperature and pressure
na −→ not available and nf −→ not found (exist but was not found in the literature).

Chemical
component

Bulk
Modulus
109 N

m

Tc Pc

Acetic Acid 2.49 593K 57.8 [Bar]

Acetone 0.80 508 K 48 [Bar]

Benzene 1.10 562 K 4.74 [MPa]

Carbon Tetrachloride 1.32 556.4 K 4.49 [MPa]

Ethyl Alcohol 1.06 514 K 6.3 [Mpa]

Gasoline 1.3 nf nf

Glycerol 4.03-4.52 850 K 7.5 [Bar]

Mercury 26.2-28.5 1750 K 172.00 [MPa]

Methyl Alcohol 0.97 Est 513 Est 78.5 [Bar]

Nitrobenzene 2.20 nf nf

Olive Oil 1.60 nf nf

Paraffin Oil 1.62 nf nf

SAE 30 Oil 1.5 na na

Seawater 2.34 na na

Toluene 1.09 591.79 K 4.109 [MPa]

Turpentine 1.28 na na

Water 2.15-2.174 647.096 K 22.064 [MPa]

Additional expansions for similar parameters are defined . The thermal expansion
is defined as

βP =
1
v

(
∂v

∂T

)

P

βv =
1
P

(
∂P

∂T

)

v

(3.6)
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These parameters are related as

βT = − βv

βP
(3.7)

The definition of bulk modulus will be used to calculate the the speed of sound in
slightly compressed liquid.

3.3 The Control Volume and Mass Conservation

In this section the conservation of the mass, momentum, and energy equation are
presented. In simple (solid) system, Newton second law is applied and is conserved
because the object remains the same (no deformation). However, when the fluid system
moves relative location of one particle to another is changing. Typically, one wants to
find or to predict the velocities in the system. Thus, using the old approach requires to
keep track of every particle (or small slabs). This kind of analysis is reasonable and it
referred to in the literature as the Lagrangian Analysis. This name is in honored J. L.
Langrange (1736–1813) who formulated the equations of motion for the moving fluid
particles.

Even though the Lagrangian system looks reasonable, this system turned out to
be difficult to solve and to analyze therefore it is used only in very few cases. The main
difficulty lies in the fact that every particle has to be traced to its original state. Leonard
Euler (1707–1783) suggested an alternative approach based on a defined volume. This
methods is referred as Eulerian method. The Eulerian method focuses on a defined area
or location to find the needed information. The use of the Eulerian methods leads to
a set differentiation equations that is referred to as the Navier–Stokes equations which
are commonly used. The Eulerian system leads to integral equations which will be used
in several cases in this book.

3.3.1 Control Volume

The Eulerian method requires to define a control volume (sometime more than one).
The control volume is a defined volume which is differentiated into two categories: non–
deformable and deformable. Non–deformable control volume is a control volume which
is fixed in space relatively to an one coordinate system. This coordinate system may
be in a relative motion to another (almost absolute) coordinate system. Deformable
control volume is a volume having part or all of its boundaries in motion during the
process at hand. The control volume is used to build the conservation equations for the
mass, momentum, energy, entropy etc. The choice of control volume ( deformable or
not) is a function to what bring a simpler solution.
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3.3.2 Continuity Equation

The mass conservation of a system is

D msys

Dt
=

D

Dt

∫

Vsys

ρdV = 0 (3.8)

The system mass after some time is made of

msys = mc.v. + mout −min (3.9)

Where mout is the mass flow out and min is the mass flow in. The change with the
time is zero and hence

0 =
D msys

Dt
=

dmc.v.

dt
+

dmout

dt
− dmin

dt
(3.10)

The first term on the right hand side is converted to integral and the other two terms
on the right hand side are combined and realizing that the sign can be accounted for
flow in or out as

d

dt

∫

c.v.

ρsdV = −
∫

Scv

ρUrn dA

Continuity

(3.11)

Equation (3.11) is essentially accounting of the mass that is the change is result of the
in an out flow. The negative sign in surface integral is because flow out marked positive
which reduces of the mass (negative derivative).

L

X
dx

Fig. -3.1. Schematics of flow in in pipe with varying density as a function time for example
3.1.

The next example is provided to illustrate this concept.
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Example 3.1:
The density changes in a pipe, due to temperature variation and other reasons, can be
approximated as

ρ(x, t)
ρ0

=
(
1− x

L

)2

cos
t

t0
.

The conduit shown in Figure 3.1 length is L and its area is A. Express the mass flow
in and/or out, and the mass in the conduit as a function of time. Write the expression
for the mass change in the pipe.

Solution

Here it is very convenient to choose a non-deformable control volume that is inside the
conduit dV is chosen as π R2 dx. Using equation (3.11), the flow out (or in) is

d

dt

∫

c.v.

ρdV =
d

dt

∫

c.v.

ρ(t)︷ ︸︸ ︷
ρ0

(
1− x

L

)2

cos
(

t

t0

) dV︷ ︸︸ ︷
π R2 dx

The density is not a function of radius, r and angle, θ and they can be taken out the
integral as

d

dt

∫

c.v.

ρdV = π R2 d

dt

∫

c.v.

ρ0

(
1− x

L

)2

cos
(

t

t0

)
dx

which results in

Flow Out =

A︷︸︸︷
π R2 d

dt

∫ L

0

ρ0

(
1− x

L

)2

cos
t

t0
dx = −π R2 L ρ0

3 t0
sin

(
t

t0

)

The flow out is a function of length, L, and time, t, and is the change of the mass in
the control volume.

End Solution

When the control volume is fixed with time, the derivative in equation (3.11) can
enter the integral since the boundaries are fixed in time and hence,

∫

Vc.v.

d ρ

dt
dV = −

∫

Sc.v.

ρUrn dA

Continuity with Fixed b.c.

(3.12)

Equation (3.12) is simpler than equation (3.11).
In deformable control volume, the left hand side of question (3.11) can be exam-

ined further to develop a simpler equation by using the extend Leibniz integral rule for
a constant density and result in

d

dt

∫

c.v.

ρ dV =

thus, =0︷ ︸︸ ︷
∫

c.v.

=0︷︸︸︷
d ρ

dt
dV +ρ

∫

Sc.v.

n̂ · Ub dA = ρ

∫

Sc.v.

Ubn dA (3.13)
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where Ub is the boundary velocity and Ubn is the normal component of the boundary
velocity.

∫

Sc.v.

Ubn dA =
∫

Sc.v.

Urn dA

Steady State Continuity Deformable

(3.14)

The meaning of the equation (3.14) is the net growth (or decrease) of the Control
volume is by net volume flow into it. Example 3.2 illustrates this point.

Example 3.2:
Balloon is attached to a rigid supply in which is supplied by a constant the mass rate,
mi. Calculate the velocity of the balloon boundaries assuming constant density.

Solution

The applicable equation is
∫

c.v.

Ubn dA =
∫

c.v.

Urn dA

The entrance is fixed, thus the relative velocity, Urn is

Urn =




−Up @ the valve

0 every else

Assume equal distribution of the velocity in balloon surface and that the center of the
balloon is moving, thus the velocity has the following form

Ub = Ux x̂ + Ubr r̂

Where x̂ is unit coordinate in x direction and Ux is the velocity of the center and where
r̂ is unit coordinate in radius from the center of the balloon and Ubr is the velocity in
that direction. The right side of equation (3.14) is the net change due to the boundary
is

∫

Sc.v.

(Ux x̂ + Ubr r̂) · n̂ dA =

center movement︷ ︸︸ ︷∫

Sc.v.

(Ux x̂) · n̂ dA +

net boundary change︷ ︸︸ ︷∫

Sc.v.

(Ubr r̂) · n̂ dA

The first integral is zero because it is like movement of solid body and also yield this
value mathematically (excises for mathematical oriented student). The second integral
(notice n̂ = r̂) yields ∫

Sc.v.

(Ubr r̂) · n̂ dA = 4 π r2 Ubr

Substituting into the general equation yields

ρ

A︷ ︸︸ ︷
4 π r2 Ubr = ρUp Ap = mi
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Hence,

Ubr =
mi

ρ 4 π r2

The center velocity is (also) exactly Ubr. The total velocity of boundary is

Ut =
mi

ρ 4 π r2
(x̂ + r̂)

It can be noticed that the velocity at the opposite to the connection to the rigid pipe
which is double of the center velocity.

End Solution

One–Dimensional Control Volume

Additional simplification of the continuity equation is of one dimensional flow. This
simplification provides very useful description for many fluid flow phenomena. The
main assumption made in this model is that the proprieties in the across section are
only function of x coordinate . This assumptions leads

∫

A2

ρ2 U2 dA−
∫

A1

ρ1 U1 dA =
d

dt

∫

V (x)

ρ(x)

dV︷ ︸︸ ︷
A(x) dx (3.15)

When the density can be considered constant equation (3.15) is reduced to

∫

A2

U2 dA−
∫

A1

U1 dA =
d

dt

∫
A(x)dx (3.16)

For steady state but with variations of the velocity and variation of the density reduces
equation (3.15) to become

∫

A2

ρ2 U2 dA =
∫

A1

ρ1 U1 dA (3.17)

For steady state and uniform density and velocity equation (3.17) reduces further to

ρ1 A1 U1 = ρ2 A2 U2 (3.18)

For incompressible flow (constant density), continuity equation is at its minimum form
of

U1 A1 = A2 U2 (3.19)

3.3.3 Reynolds Transport Theorem

It can be noticed that the same derivations carried for the density can be carried for
other intensive properties such as specific entropy, specific enthalpy. Suppose that f is



48 CHAPTER 3. BASIC OF FLUID MECHANICS

intensive property (which can be a scalar or a vector) undergoes change with time. The
change of accumulative property will be then

D

Dt

∫

sys

f ρdV =
d

dt

∫

c.v.

f ρdV +
∫

c.v

f ρ UrndA (3.20)

This theorem named after Reynolds, Osborne, (1842-1912) which is actually a three
dimensional generalization of Leibniz integral rule1. To make the previous derivation
clearer, the Reynolds Transport Theorem will be reproofed and discussed. The ideas
are the similar but extended some what.

Leibniz integral rule2 is an one dimensional and it is defined as

d

dy

∫ x2(y)

x1(y)

f(x, y) dx =
∫ x2(y)

x1(y)

∂f

∂y
dx + f(x2, y)

dx2

dy
− f(x1, y)

dx1

dy
(3.21)

Initially, a proof will be provided and the physical meaning will be explained. Assume
that there is a function that satisfy the following

G(x, y) =
∫ x

f (α, y) dα (3.22)

Notice that lower boundary of the integral is missing and is only the upper limit of the
function is present3. For its derivative of equation (3.22) is

f(x, y) =
∂G

∂x
(3.23)

differentiating (chain rule d uv = u dv + v du) by part of left hand side of the Leibniz
integral rule (it can be shown which are identical) is

d [G(x2, y)−G(x1, y)]
dy

=

1︷ ︸︸ ︷
∂G

∂x2

dx2

dy
+

2︷ ︸︸ ︷
∂G

∂y
(x2, y)−

3︷ ︸︸ ︷
∂G

∂x1

dx1

dy
−

4︷ ︸︸ ︷
∂G

∂y
(x1, y) (3.24)

The terms 2 and 4 in equation (3.24) are actually (the x2 is treated as a different
variable)

∂G

∂y
(x2, y)− ∂G

∂y
(x1, y) =

∫ x2(y)

x1(y)

∂ f(x, y)
∂y

dx (3.25)

The first term (1) in equation (3.24) is

∂G

∂x2

dx2

dy
= f(x2, y)

dx2

dy
(3.26)

1These papers can be read on-line at http://www.archive.org/details/papersonmechanic01reynrich.
2This material is not necessarily but is added her for completeness. This author provides this material

just given so no questions will be asked.
3There was a suggestion to insert arbitrary constant which will be canceled and will a provide

rigorous proof. This is engineering book and thus, the exact mathematical proof is not the concern
here. Nevertheless, if there will be a demand for such, it will be provided.
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The same can be said for the third term (3). Thus this explanation is a proof the Leibniz
rule.

The above “proof” is mathematical in nature and physical explanation is also
provided. Suppose that a fluid is flowing in a conduit. The intensive property, f is in-
vestigated or the accumulative property, F . The interesting information that commonly
needed is the change of the accumulative property, F , with time. The change with time
is

DF

Dt
=

D

Dt

∫

sys

ρ f dV (3.27)

For one dimensional situation the change with time is

DF

Dt
=

D

Dt

∫

sys

ρ f A(x)dx (3.28)

If two limiting points (for the one dimensional) are moving with a different coordinate
system, the mass will be different and it will not be a system. This limiting condition
is the control volume for which some of the mass will leave or enter. Since the change
is very short (differential), the flow in (or out) will be the velocity of fluid minus the
boundary at x1, Urn = U1 − Ub. The same can be said for the other side. The
accumulative flow of the property in, F , is then

Fin =

F1︷︸︸︷
f1 ρ

dx1
dt︷︸︸︷

Urn (3.29)

The accumulative flow of the property out, F , is then

Fout =

F2︷︸︸︷
f2 ρ

dx2
dt︷︸︸︷

Urn (3.30)

The change with time of the accumulative property, F , between the boundaries is

d

dt

∫

c.v.

ρ(x) f A(x) dA (3.31)

When put together it brings back the Leibniz integral rule. Since the time variable, t,
is arbitrary and it can be replaced by any letter. The above discussion is one of the
physical meaning of the Leibniz’ rule.

Reynolds Transport theorem is a generalization of the Leibniz rule and thus the
same arguments are used. The only difference is that the velocity has three components
and only the perpendicular component enters into the calculations.

D

DT

∫

sys

f ρdV =
d

dt

∫

c.v

f ρ dV +
∫

Sc.v.

f ρ Urn dA

Reynolds Transport

(3.32)
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Example 3.3:
Inflated cylinder is supplied in its center with constant mass flow. Assume that the gas
mass is supplied in uniformed way of mi [kg/m/sec]. Assume that the cylinder inflated
uniformly and pressure inside the cylinder is uniform. The gas inside the cylinder obeys
the ideal gas law. The pressure inside the cylinder is linearly proportional to the volume.
For simplicity, assume that the process is isothermal. Calculate the cylinder boundaries
velocity.

Solution

The applicable equation is

increase pressure︷ ︸︸ ︷∫

Vc.v

dρ

dt
dV +

boundary velocity︷ ︸︸ ︷∫

Sc.v.

ρUbdV =

in or out flow rate︷ ︸︸ ︷∫

Sc.v.

ρUrn dA

Every term in the above equation is analyzed but first the equation of state and volume
to pressure relationship have to be provided.

ρ =
P

R T

and relationship between the volume and pressure is

P = f π Rc
2

Where Rc is the instantaneous cylinder radius. Combining the above two equations
results in

ρ =
f π Rc

2

R T

Where f is a coefficient with the right dimension. It also can be noticed that boundary
velocity is related to the radius in the following form

Ub =
dRc

dt

The first term requires to find the derivative of density with respect to time which is

dρ

dt
=

d

dt

(
f π Rc

2

R T

)
=

2 f π Rc

R T

Ub︷︸︸︷
dRc

dt

Thus, the first term is

∫

Vc.v

dρ

dt

2 π Rc︷︸︸︷
dV =

∫

Vc.v

2 f π Rc

R T
Ub

2 π Rc dRc︷︸︸︷
dV =

4 f π2 Rc
3

3 R T
Ub
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The integral can be carried when Ub is independent of the Rc
4 The second term is

∫

Sc.v.

ρUbdA =

ρ︷ ︸︸ ︷
f π Rc

2

R T
Ub

A︷ ︸︸ ︷
2 πRc =

(
f π3 Rc

2

R T

)
Ub

substituting in the governing equation obtained the form of

f π2 Rc
3

R T
Ub +

4 f π2 Rc
3

3 R T
Ub = mi

The boundary velocity is then

Ub =
mi

7 f π2 Rc
3

3 R T

G =
3 mi R T

7 f π2 Rc
3

End Solution

Example 3.4:
A balloon is attached to a rigid supply and is supplied by a constant mass rate, mi.
Assume that gas obeys the ideal gas law. Assume that balloon volume is a linear function
of the pressure inside the balloon such as P = fv V . Where fv is a coefficient describing
the balloon physical characters. Calculate the velocity of the balloon boundaries under
the assumption of isothermal process.

Solution

The question is more complicated than Example 3.4. The ideal gas law is

ρ =
P

R T

The relationship between the pressure and volume is

P = fv V =
4 fv π Rb

3

3

The combining of the ideal gas law with the relationship between the pressure and
volume results

ρ =
4 fv π Rb

3

3 R T

The applicable equation is
∫

Vc.v

dρ

dt
dV +

∫

Sc.v.

ρ (Uc x̂ + Ubr̂) dA =
∫

Sc.v.

ρUrn dA

4The proof of this idea is based on the chain differentiation similar to Leibniz rule. When the
derivative of the second part is dUb/dRc = 0.
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The right hand side of the above equation is
∫

Sc.v.

ρUrn dA = mi

The density change is

dρ

dt
=

12 fv π Rb
2

R T

Ub︷︸︸︷
dRb

dt
The first term is

∫ Rb

0

6=f(r)︷ ︸︸ ︷
12 fv π Rb

2

R T
Ub

dV︷ ︸︸ ︷
4 π r2 dr =

16 fv π2 Rb
5

3 R T
Ub

The second term is

∫

A

4 fv π Rb
3

3 R T
Ub dA =

4 fv π Rb
3

3 R T
Ub

A︷ ︸︸ ︷
4 π Rb

2 =
8 fv π2 Rb

5

3 R T
Ub

Subsisting the two equations of the applicable equation results

Ub =
1
8

mi R T

fv π2 Rb
5

Notice that first term is used to increase the pressure and second the change of the
boundary.

End Solution

3.4 Momentum Conservation
In the previous section, the Reynolds Transport Theorem (RTT) was applied to mass
conservation. Mass is a scalar (quantity without magnitude). This section deals with
momentum conservation which is a vector. The Reynolds Transport Theorem (RTT)
can be applicable to any quantity and hence can be apply to vectors. Newton’s sec-
ond law for a single body can apply to multiply body system which further extended
to continuous infinitesimal elements. In analysis the Newton’s law, it is common to
differentiate the external forces into body forces, surface forces. In many problems, the
main body force is the gravity which acts on all the system elements.

The surface forces are divided into two categories: one perpendicular to the surface
and one in the surface plane. Thus, it can be written as

∑
FFF s =

∫

c.v.

SnSnSn dA +
∫

c.v.

τ dA (3.33)

Where the surface “force”, SnSnSn, is in the surface direction, and τ are the shear stresses.
The surface “force”, SnSnSn, is made out of two components, one due to viscosity (solid
body) and two consequence of the fluid pressure. Assume that the pressure component
reasonable to represent SnSnSn.
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3.4.1 Momentum Governing Equation

Newton’s second law d(mUUU)/dt = FFF requires that the use Reynolds Transport Theorem
(RTT) interpretation which is

D

Dt

∫

sys

ρUUUdV =
t

dt

∫

c.v.

ρUUUdV +
∫

c.v.

ρUUUUUUrndA (3.34)

Thus, the general form of the momentum equation without the external forces is

∫

c.v.

ggg ρ dV −
∫

c.v.

PPP dA +
∫

c.v.

τ · dAdAdA

=
t

dt

∫

c.v.

ρUUUdV +
∫

c.v.

ρUUU UrnUrnUrn dV

Integral Momentum Equation

(3.35)

With external forces equation (3.35) is transformed to

∑
FFF ext +

∫

c.v.

ggg ρ dV−
∫

c.v.

PPP · dAdAdA +
∫

c.v.

τ · dAdAdA =

t

dt

∫

c.v.

ρUUUdV +
∫

c.v.

ρUUU UrnUrnUrndV

Integral Momentum Equation & External Forces

(3.36)

The external forces, Fext, are the forces resulting from support of the control volume
by non–fluid elements. These external forces are commonly associated with pipe, ducts,
supporting solid structures, friction (non-fluid), etc.

Equation (3.36) is a vector equation which can be broken into its three com-
ponents. In Cartesian coordinate, for example in the x coordinate, the components
are

∑
Fx +

∫

c.v.

(
ggg · î

)
ρ dV

∫

c.v.

PPP cos θx dA +
∫

c.v.

τx · dAdAdA =

t

dt

∫

c.v.

ρUUUx dV +
∫

c.v.

ρUUUx ·UUUrndA (3.37)

where θx is the angle between n̂ and î or (n̂ · î).
The momentum equation can be simplified for the steady state condition because

the unsteady term is zero as

∑
FFF ext +

∫

c.v.

ggg ρ dV −
∫

c.v.

PPP dA +
∫

c.v.

τ dA =
∫

c.v.

ρUUUUrndA

Integral Steady State Momentum Equation

(3.38)

Another important sub category of simplification deals with flow under approxi-
mation of the frictionless flow and uniform pressure. This kind of situations arise when
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friction (forces) is small compared to kinetic momentum change. Additionally, in these
situations, flow is exposed to the atmosphere and thus (almost) uniform pressure sur-
rounding the control volume. In this situation, the mass flow rate in and out are equal.
Thus, equation (3.38) is further reduced to

FFF =
∫

out

ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂) dA−

∫

in

ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂) dA (3.39)

In situations where the velocity is provided and known (remember that the density is
constant) the integral can be replaced by

FFF = ṁUUUo − ṁUUU i (3.40)

The average velocity is related to the velocity profile by the following integral

U
2

=
1
A

∫

A

[U(r)]2 dA (3.41)

Equation (3.41) is applicable to any velocity profile and any geometrical shape.

3.4.2 Conservation Moment of Momentum

The angular momentum can be derived in the same manner as the momentum equation
for control volume. The force

F =
D

Dt

∫

Vsys

ρUUUdV (3.42)

The angular momentum then will be obtained by calculating the change of every element
in the system as

M = rrr ×FFF =
D

Dt

∫

Vsys

ρrrr ×UUU dV (3.43)

Now the left hand side has to be transformed into the control volume as

M =
d

dt

∫

Vc.v.

ρ (rrr ×UUU) dV +
∫

Sc.v

ρ (rrr ×UUU)UUUrn dA (3.44)

The angular momentum equation, applying equation (3.44) to uniform and steady state
flow with neglected pressure gradient is reduced to

M = ṁ (r2 × U2 + r2 × U1) (3.45)

Example 3.5:
A large tank has opening with area, A. In front and against the opening there a block
with mass of 50[kg]. The friction factor between the block and surface is 0.5. Assume
that resistance between the air and the water jet is negligible. Calculated the minimum
height of the liquid in the tank in order to start to have the block moving?
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Solution

The solution of this kind problem first requires to know at what accuracy this solution
is needed. For great accuracy, the effect minor loss or the loss in the tank opening have
taken into account. First assuming that a minimum accuracy therefore the information
was given on the tank that it large. First, the velocity to move the block can be obtained
from the analysis of the block free body diagram (the impinging jet diagram).

τw

ρUexit
2

ρUout
2

mg

Fig. -3.2. Jet impinging jet surface perpendicu-
lar and with the surface.

The control volume is attached to
the block. It is assumed that the two
streams in the vertical cancel each other.
The jet stream has only one component in
the horizontal component. Hence,

F = ρA Uexit
2 (3.V.a)

The minimum force the push the block is

ρAUexit
2 = m g µ =⇒ Uexit =

√
mg µ

ρA
(3.V.b)

And the velocity as a function of the height is U =
√

ρ g h and thus

h =
mµ

ρ2 A
(3.V.c)

It is interesting to point out that the gravity is relevant. That is the gravity has no effect
on the velocity (height) required to move the block. However, if the gravity was in the
opposite direction, no matter what the height will be the block will not move (neglecting
other minor effects). So, the gravity has effect and the effect is the direction, that is
the same height will be required on the moon as the earth.

For very tall blocks, the forces that acts on the block in the vertical direction
is can be obtained from the analysis of the control volume shown in Figure 3.2. The
jet impinged on the surface results in out flow stream going to all the directions in the
block surface. Yet, the gravity acts on all these “streams” and eventually the liquid flows
downwards. In fact because the gravity the jet impinging in downwards sled direction.
At the extreme case, all liquid flows downwards. The balance on the stream downwards
(for steady state) is

ρ Uout
2 ∼= ρ Vliquid g + mg (3.V.d)

Where Vliquid is the liquid volume in the control volume (attached to the block). The
pressure is canceled because the flow is exposed to air. In cases were ρ Vliquid g >

ρ Uout
2

the required height is larger. In the opposite cases the height is smaller.
End Solution

3.5 Energy Conservation
This section deals with the energy conservation or the first law of thermodynamics. The
fluid, as all phases and materials, obeys this law which creates strange and wonderful
phenomena such as a shock and choked flow.
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It was shown in Chapter 2 that the energy rate equation (2.10) for a system is

D

Dt

(
EU + m

U2

2
+ mg z

)
= Q̇− Ẇ (3.46)

Equation (3.46) requires that the time derivative interpretation from a system to a
control volume. The energy transfer is carried (mostly5) by heat transfer to the system
or the control volume. There are three modes of heat transfer, conduction, convection6

and radiation. In most problems, the radiation is minimal and the discussing will be
restricted to convection and conduction. The convection are mostly covered by the
terms on the right hand side. The main heat transfer mode on the left hand side is
conduction. Conduction for most simple cases is governed by Fourier’s Law which is

dq̇ = kT
dT

dn
dA (3.47)

Where dq̇ is heat transfer to an infinitesimal small area per time and kT is the heat
conduction coefficient. The heat derivative is normalized into area direction. The total
heat transfer to the control volume is

Q̇ =
∫

Acv

k
dT

dn
dA (3.48)

The work done on the system is more complicated to express than the heat
transfer. There are two kinds of works that the system does on the surroundings. The
first kind work is by the friction or the shear stress and the second by normal force.
As in the previous chapter, the surface forces are divided into two categories: one
perpendicular to the surface and one with the surface direction. The work done by
system on the surroundings (see Figure 3.3) is

dw =

dFFF︷ ︸︸ ︷
−SSS dAAA ·d` = − (SnSnSn + τ ) ·

dV︷ ︸︸ ︷
d`̀̀dA (3.49)

System at t

System at t + dt

dℓ

Sn

τ

Fig. -3.3. The work on the control volume is
done by two different mechanisms, Sn and τ .

The change of the work for an in-
finitesimal time (excluding the shaft work)
is

dw

dt
= − (SnSnSn + τ ) ·

U︷︸︸︷
d`̀̀

dt
dA = − (SnSnSn + τ ) ·UUU dA

(3.50)

The total work for the system including
the shaft work is

Ẇ = −
∫

Ac.v.

(SnSnSn + τ ) UUU dA−Wshaft (3.51)

5There are other methods such as magnetic fields (like microwave) which are not part of this book.
6When dealing with convection, actual mass transfer must occur and thus no convection is possible

to a system by the definition of system.
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The basic energy equation (3.46) for system is

∫

Asys

kT
dT

dn
dA+

∫

Asys

(SnSnSn + τ ) dV

+Ẇshaft =
D

Dt

∫

Vsys

ρ

(
EU + m

U2

2
+ g z

)
dV

(3.52)

Equation (3.52) does not apply any restrictions on the system. The system can
contain solid parts as well several different kinds of fluids. Now Reynolds Transport
Theorem can be used to transformed the left hand side of equation (3.52) and thus
yields

∫

Acv

kT
dT

dn
dA+

∫

Acv

(SnSnSn + τ ) dA + Ẇshaft =

d

dt

∫

Vcv

ρ

(
Eu + m

U2

2
+ g z

)
dV

+
∫

Acv

(
Eu + m

U2

2
+ g z

)
ρUrndA

Energy Equation

(3.53)

From now on the control volume notation and system will be dropped since all equations
deals with the control volume. In the last term in equation (3.53) the velocity appears
twice. Note that U is the velocity in the frame of reference while Urn is the velocity
relative to the boundary. The normal stress component is replaced by the pressure. The
work rate (excluding the shaft work) is

Ẇ ∼=

flow work︷ ︸︸ ︷∫

S

Pn̂ ·UUUdA−
∫

S

τ ·UUU n̂ dA (3.54)

The first term on the right hand side is referred to in the literature as the flow
work and is

∫

S

Pn̂ ·UUUdA =
∫

S

P

Urn︷ ︸︸ ︷
(U − Ub) n̂ dA +

∫

S

P UbndA (3.55)

Equation (3.55) can be further manipulated to become

∫

S

Pn̂ ·UUUdA =

work due to
the flow︷ ︸︸ ︷∫

S

P

ρ
ρUrn dA +

work due to
boundaries
movement︷ ︸︸ ︷∫

S

PUbndA (3.56)
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The second term is referred to as the shear work and is defined as

Ẇshear = −
∫

S

τ ·UUUdA (3.57)

Substituting all these terms into the governing equation yields

Q̇− Ẇshear− Ẇshaft =
d

dt

∫

V

(
Eu +

U2

2
+ g z

)
dV +

∫

S

(
Eu +

P

ρ
+

U2

2
+ g z

)
Urn ρ dA +

∫

S

PUrndA
(3.58)

The new term P/ρ combined with the internal energy, Eu is referred to as the enthalpy,
h, which was discussed on page 28. With these definitions equation (3.58) transformed

Q̇− Ẇshear+ Ẇshaft =
d

dt

∫

V

(
Eu +

U2

2
+ g z

)
ρ dV +

∫

S

(
h +

U2

2
+ g z

)
Urn ρ dA +

∫

S

PUbndA

Simplified Energy Equation

(3.59)

Equation (3.59) describes the basic energy conservation for the control volume in sta-
tionary coordinates.

3.5.1 Approximation of Energy Equation

The energy equation is complicated and several simplifications are commonly used.
These simplifications provides reasonable results and key understanding of the physical
phenomena and yet with less work.

The steady state situation provides several ways to reduce the complexity. The
time derivative term can be eliminated since the time derivative is zero. The acceleration
term must be eliminated for the obvious reason. Hence the energy equation is reduced
to

Q̇− Ẇshear − Ẇshaft =
∫

S

(
h +

U2

2
+ g z

)
Urn ρ dA +

∫

S

PUbndA

Steady State Equation

(3.60)

If the flow is uniform or can be estimated as uniform, equation (3.60) is reduced to

Q̇− Ẇshear − Ẇshaft =
(

h +
U2

2
+ g z

)
Urn ρAout−

(
h +

U2

2
+ g z

)
Urn ρAin + PUbnAout − PUbnAin

Steady State Equation & uniform

(3.61)
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It can be noticed that last term in equation (3.61) for non-deformable control volume
does not vanished. The reason is that while the velocity is constant, the pressure is dif-
ferent. For a stationary fix control volume the energy equation, under this simplification
transformed to

Q̇− Ẇshear − Ẇshaft =
(

h +
U2

2
+ g z

)
Urn ρAout−

(
h +

U2

2
+ g z

)
Urn ρAin (3.62)

Dividing equation the mass flow rate provides

q̇ − ẇshear − ẇshaft =
(

h +
U2

2
+ g z

)∣∣∣∣
out

−
(

h +
U2

2
+ g z

)∣∣∣∣
in

Steady State Equation, Fix ṁ & uniform

(3.63)

Energy Equation in Frictionless Flow and Steady State

In cases were the friction can be neglected using the second law of thermodynamics
yields

dqrev = dEu + d (P v)− v dP = dEu + d

(
P

ρ

)
− v dP (3.64)

Integrating equation (3.64) and taking time derivative transformed equation (3.64) into
Using the RTT to transport equations to control volume results in

Q̇rev = ṁ

[
(hout − hin)−

(∫
dP

ρ

∣∣∣∣
out

−
∫

dP

ρ

∣∣∣∣
in

)]
(3.65)

After additional manipulations results in

0 = wshaft +

change
in
pressure
energy︷ ︸︸ ︷(∫

dP

ρ

∣∣∣∣
2

−
∫

dP

ρ

∣∣∣∣
1

)
+

change
in kinetic
energy︷ ︸︸ ︷

U2
2 − U1

2

2
+

change
in po-
tential
energy︷ ︸︸ ︷

g (z2 − z1) (3.66)

Equation (3.66) for constant density is

0 = wshaft +
P2 − P1

ρ
+

U2
2 − U1

2

2
+ g (z2 − z1) (3.67)

For no shaft work equation (3.67) reduced to

0 =
P2 − P1

ρ
+

U2
2 − U1

2

2
+ g (z2 − z1) (3.68)

Example 3.6:
Consider a flow in a long straight pipe. Initially the flow is in a rest. At time, t0 the
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L

Fig. -3.4. Flow in a long pipe when
exposed to a jump in the pressure
difference.

a constant pressure difference is applied on
the pipe. Assume that flow is incompress-
ible, and the resistance or energy loss is
f . Furthermore assume that this loss is a
function of the velocity square. Develop
equation to describe the exit velocity as a
function of time. State your assumptions.

Solution

The mass balance on the liquid in the pipe results in

0 =

=0︷ ︸︸ ︷∫

V

∂ρ

∂t
dV +

=0︷ ︸︸ ︷∫

A

ρUbndA+
∫

A

ρUrndA =⇒ ¢ρ¡A Uin = ¢ρ¡AUexit
(3.VI.a)

There is no change in the liquid mass inside pipe and therefore the time derivative is
zero (the same mass resides in the pipe at all time). The boundaries do not move and
the second term is zero. Thus, the flow in and out are equal because the density is
identical. Furthermore, the velocity is identical because the cross area is same.

It can be noticed that for the energy balance on the pipe, the time derivative can
enter the integral because the control volume has fixed boundaries. Hence,

Q̇−
=0︷ ︸︸ ︷

Ẇshear +

=0︷ ︸︸ ︷
Ẇshaft =

∫

V

d

dt

(
Eu +

U2

2
+ g z

)
ρ dV +

∫

S

(
h +

U2

2
+ g z

)
Urn ρ dA +

∫

S

PUbndA

(3.VI.b)

The boundaries shear work vanishes because the same arguments present before (the
work, where velocity is zero, is zero. In the locations where the velocity does not
vanished, such as in and out, the work is zero because shear stress are perpendicular to
the velocity).

There is no shaft work and this term vanishes as well. The first term on the right
hand side (with a constant density) is

ρ

∫

Vpipe

d

dt

(
Eu +

U2

2
+

constant︷︸︸︷
g z

)
dV = ρU

dU

dt

L π r2︷ ︸︸ ︷
Vpipe +ρ

∫

Vpipe

d

dt
(Eu) dV

(3.VI.c)
where L is the pipe length, r is the pipe radius, U averaged velocity.

In this analysis, it is assumed that the pipe is perpendicular to the gravity line and
thus the gravity is constant. The gravity in the first term and all other terms, related
to the pipe, vanish again because the value of z is constant. Also, as can be noticed
from equation (3.VI.a), the velocity is identical (in and out). Hence the second term
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becomes

∫

A


h +




©©©©©*
constant

U2

2
+ g z





 ρUrndA =

∫

A

h︷ ︸︸ ︷(
Eu +

P

ρ

)
ρUrndA (3.VI.d)

Equation (3.VI.d) can be further simplified (since the area and averaged velocity are
constant, additionally notice that U = Urn) as

∫

A

(
Eu +

P

ρ

)
ρUrndA = ∆P U A +

∫

A

ρEu Urn dA (3.VI.e)

The third term vanishes because the boundaries velocities are zero and therefore∫

A

P UbndA = 0 (3.VI.f)

Combining all the terms results in

Q̇ = ρU
dU

dt

L π r2︷ ︸︸ ︷
Vpipe +ρ

d

dt

∫

Vpipe

Eu dV + ∆P U dA +
∫

A

ρEu U dA (3.VI.g)

equation (3.VI.g) can be rearranged as

−K U2
2︷ ︸︸ ︷

Q̇− ρ

∫

Vpipe

d (Eu)
dt

dV −
∫

A

ρEu U dA = ρLπ r2 U
dU

dt
+ (Pin − Pout) U

(3.VI.h)
The terms on the LHS (left hand side) can be combined. It common to assume (to
view) that these terms are representing the energy loss and are a strong function of
velocity square7. Thus, equation (3.VI.h) can be written as

−K
U2

2
= ρL π r2 U

dU

dt
+ (Pin − Pout) U (3.VI.i)

Dividing equation (3.VI.i) by K U/2 transforms equation (3.VI.i) to

U +
2 ρLπ r2

K

dU

dt
=

2 (Pin − Pout)
K

(3.VI.j)

Equation (3.VI.j) is a first order differential equation. The solution this equation is
described in the appendix and which is

U = e
−
0
@ tK

2 π r2 ρ L

1
A


2 (Pin − Pout)e

0
@ tK

2 π r2 ρL

1
A

K
+ c


 e

0
@2 π r2 ρ t L

K

1
A

(3.VI.k)

7The shear work inside the liquid refers to molecular work (one molecule work on the other molecule).
This shear work can be viewed also as one control volume work on the adjoined control volume.
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Applying the initial condition, U(t = 0) = 0 results in

U =
2 (Pin − Pout)

K


1−e

−
0
@ tK

2 π r2 ρL

1
A


 (3.VI.l)

The solution is an exponentially approaching the steady state solution. In steady state
the flow equation (3.VI.j) reduced to a simple linear equation. The solution of the linear
equation and the steady state solution of the differential equation are the same.

U =
2 (Pin − Pout)

K
(3.VI.m)

Another note, in reality the resistance, K, is not constant but rather a strong
function of velocity (and other parameters such as temperature8, velocity range, ve-
locity regime and etc.). This function will be discussed in a greater extent later on.
Additionally, it should be noted that if momentum balance was used a similar solution
(but not the same) was obtained.

End Solution

3.6 Limitations of Integral Approach

The integral method has limit accuracy and some techniques suggested in “Basic of Fluid
Mechanics” by Bar–Meir and others are available to enhance the calculations quality.
However, even with these enhancements simply cannot tackle some of the problems.
The improvements to the integral methods are the corrections to the estimates of the
energy or other quantities in the conservation equations. The accuracy issues that
integral methods intrinsically suffers from no ability to exact flow field and thus lost the
accuracy. The integral method does not handle the problems such as the free surface
with reasonable accuracy. In addition, the dissipation can be ignored. In some cases
that dissipation play major role which the integral methods ignores. The discussion on
the limitations was not provided to discard usage of this method but rather to provide a
guidance of use with caution. The integral method is a powerful and yet simple method
but has has to be used with the limitations of the method in mind.

3.7 Differential Analysis

The integral analysis has a limited accuracy, which leads to a different approach of dif-
ferential analysis. The differential analysis allows the flow field investigation in greater
detail. In differential analysis, the emphasis is on infinitesimal scale and thus the anal-
ysis provides better accuracy as complementary analysis to the integral analysis. This
analysis leads to partial differential equations which are referred to as the Navier-Stokes
equations. Navier-Stokes equations are non–linear and there are more than one possible

8Via the viscosity effects.
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solution in many cases (if not most cases) e.g. the solution is not unique. However even
for the “regular” solution the mathematics is very complex. Even for simple situations,
there are cases when complying with the boundary conditions leads to a discontinuity
(shock) or pushes the boundary condition(s) further downstream (choked flow). These
issues are discussed later.

3.7.1 Mass Conservation

A B

C D

E F

G
H

x

(

ρ +
dρ

dz

)(

Uz +
dUz

dz

)

dxdy

(

ρ
+

dρ

dy

)

(

Uy
+

dU
y

dy

)

dx
dz

(

ρ +
dρ

dx

)(

Ux +
dUx

dx

)

dydz

ρUz dxdy

ρUx dydz

ρ
Uy

dx
dz

Fig. -3.5. The mass balance on the infinitesimal control
volume.

Fluid flows into and from a three
dimensional infinitesimal control
volume depicted in Figure 3.5.
The mass conservation for this in-
finitesimal small system is zero
thus

D

Dt

∫

V

ρdV = 0 (3.69)

However for a control volume us-
ing Reynolds Transport Theorem
(RTT), the following can be writ-
ten

D

Dt

∫

V

ρdV =
d

dt

∫

V

ρdV +
∫

A

Urn ρ dA = 0 (3.70)

Using the regular interpolation9 results in

∂ρ

∂t
+

∂ρUx

∂x
+

∂ρUy

∂y
+

∂ρUz

∂z
= 0

Continuity in Cartesian Coordinates

(3.71)

In cylindrical coordinates equation (3.71) is written as

∂ρ

∂t
+

1
r

∂ (r ρ Ur)
∂r

+
1
r

∂ρUθ

∂θ
+

∂ρUz

∂z
= 0

Continuity in Cylindrical Coordinates

(3.72)

For the spherical coordinates, the continuity equation becomes

∂ρ

∂t
+

1
r2

∂
(
r2 ρUr

)

∂r
+

1
r sin θ

∂ (ρUθ sin θ)
∂θ

+
1

r sin θ

∂ρUφ

∂z
= 0

Continuity in Spherical Coordinates

(3.73)

9See for more details in “Basic of Fluid Mechanics, Bar-Meir, Potto Project, www.potto.org
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The continuity equations (3.71), (3.72) and (3.73) can be expressed in a vector form
as

∂ρ

∂t
+ ∇ · (ρUUU) = 0

Continuity Equation

(3.74)

The use of these equations is normally combined with other equations (momentum and
or energy equations). There are very few cases where this equation is used on its own
merit.

3.7.2 Momentum Equations or N–S equations

Newton second law first described as an integral equation. Now this integral equation
applied to infinitesimal control volume yield differential equation in the x–coordinate of

ρ
DUy

Dt
=

(
∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z

)
+ ρ fGy (3.75)

There are two more equations for the other two coordinates. This equation in vector is

ρ
DUUU

Dt
= ∇ · τ (i) + ρfGfGfG

Momentum Equation

(3.76)

where here

τ (i) = τixî + τiy ĵ + τiz k̂

is part of the shear stress tensor and i can be any of the x, y, or z.
Or in index (Einstein) notation as

ρ
DUi

Dt
=

∂τji

∂xi
+ ρ fGi (3.77)

Equations (3.76) requires that the stress tensor be defined in term of the veloc-
ity/deformation. The relationship between the stress tensor and deformation depends
on the materials. As engineers do in general, the simplest model is assumed which re-
ferred as the solid continuum model. In this model the relationship between the (shear)
stresses and rate of strains are assumed to be linear. In solid material, the shear stress
yields a fix amount of deformation. In contrast, when applying the shear stress in fluids,
the result is a continuous deformation. Furthermore, reduction of the shear stress does
not return the material to its original state as in solids. The similarity to solids the
increase shear stress in fluids yields larger deformations (larger rate of deformations).
Thus this “solid” model is a linear relationship with three main assumptions:

a. There is no preference in the orientation (also call isentropic fluid),
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b. there is no left over stresses (In other words when the “no shear stress” situation
exist the rate of deformation or strain is zero), and

c. a linear relationship exist between the shear stress and the rate of shear strain.

It was shown10 that

τij = µ
Dγij

Dt
= µ

(
dUj

di
+

dUi

dj

)
(3.78)

where i 6= j and i = x or y or z.
After considerable derivations it can be shown that the relationship between the

shear stress and the velocity is

τxx = −Pm + 2 µ
∂Ux

∂x
+

2
3
µ∇ ·UUU (3.79)

where Pm is the mechanical pressure and is defined as

Pm = −τxx + τyy + τzz

3

Mechanical Pressure

(3.80)

Commonality engineers like to combined the two difference expressions into one as

τxy = −
(

Pm +
2
3
µ∇ ·UUU

) =0︷︸︸︷
δxy +µ

(
∂Ux

∂y
+

∂Uy

∂x

)
(3.81)

or

τxx = −
(

Pm +
2
3
µ∇ ·UUU

) =1︷︸︸︷
δxy +µ

(
∂Ux

∂x
+

∂Uy

∂y

)
(3.82)

where δij is the Kronecker delta what is δij = 1 when i = j and δij = 0 otherwise. Or
index notation

τij = −
(

Pm +
2
3
µ∇ ·UUU

)
δij + µ

(
∂Ui

∂xj
+

∂Uj

∂xi

)
(3.83)

This expression suggests a new definition of the thermodynamical pressure is

P = Pm +
2
3
µ∇ ·UUU

Thermodynamic Pressure

(3.84)

10“Basic of Fluid Mechanics”, Bar-Meir
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Thus, the momentum equation can be written as

ρ

(
DUx

Dt

)
= −∂

(
P +

(
2
3µ− λ

)∇ ·UUU)

∂x
+ µ

(
∂2Ux

∂x2
+

∂2Ux

∂y2
+

∂2Ux

∂z2

)
+fffBx

(3.85)

or in a vector form as

ρ
DUUU

Dt
= −∇P +

(
1
3
µ + λ

)
∇ (∇ ·UUU) + µ∇2UUU + fffB

N-S in stationary Coordinates

(3.86)

For in index form as

ρ
D Ui

Dt
= − ∂

∂xi

(
P +

(
2
3
µ− λ

)
∇ ·UUU

)
+

∂

∂xj

(
µ

(
∂Ui

∂xj
+

∂Uj

∂xi

))
+ fffBi (3.87)

3.7.3 Boundary Conditions and Driving Forces

Boundary Conditions Categories

The governing equations discussed earlier requires some boundary conditions and initial
conditions. These conditions described the physical situations which are believed or
should exist or approximated. These conditions can be categorized by the velocity,
pressure, or in more general terms as the shear stress conditions. A common velocity
condition is that the liquid has the same value as the solid interface velocity which is
known as the “no slip” condition. The solid surface is rough thus the liquid participles
(or molecules) are slowed to be at the solid surface velocity. This boundary condition
was experimentally observed under many conditions yet it is not universally true. The
slip condition (as oppose to “no slip” condition) exist in situations where the scale is
very small and the velocity is relatively very small. The slip can be neglected in the
large scale while the slip cannot be neglected in the small scale.

As oppose to a given velocity at particular point, A boundary condition can be
given as requirement on the acceleration (velocity) at unknown location. This condition
is called the kinematic boundary condition and associated with liquid and will not be
discussed here.

The second condition that commonality prescribed at the interface is the static
pressure at a specific location. The static pressure is measured perpendicular to the
flow direction. The last condition is similar to the pressure condition of prescribed shear
stress or a relationship to it. In this category include the boundary conditions with
issues of surface tension.

The body forces, in general and gravity in a particular, are the condition that
given on the flow beside the velocity, shear stress (including the surface tension) and
the pressure. The gravity is a common body force which is considered in many fluid
mechanics problems. The gravity can be considered as a constant force in most cases.
Another typical driving force is the shear stress.



CHAPTER 4

Speed of Sound

4.1 Motivation

In traditional compressible flow classes there is very little discussion about the speed
of sound outside the ideal gas. The author thinks that this approach has many short-
comings. In a recent consultation an engineer1 design a industrial system that contains
converting diverging nozzle with filter to remove small particles from air. The engineer
was well aware of the calculation of the nozzle. Thus, the engineer was able to predict
that was a chocking point. Yet, the engineer was not ware of the effect of particles on
the speed of sound. Hence, the actual flow rate was only half of his prediction. As it will
shown in this chapter, the particles can, in some situations, reduces the speed of sound
by almost as half. With the “new” knowledge from the consultation the calculations
were within the range of acceptable results.

The above situation is not unique in the industry. It should be expected that
engineers know how to manage this situation of non pure substances (like clean air).
The fact that the engineer knows about the chocking is great but it is not enough
for today’s sophisticated industry2. In this chapter an introductory discussion is given
about different situations which can appear the industry in regards to speed of sound.

4.2 Introduction

1Aerospace engineer, alumni of University of Minnesota, Aerospace Department.
2Pardon, but a joke is must in this situation. A cat is pursuing a mouse and the mouse escape

and hide in the hole. Suddenly, the mouse hear a barking dog and a cat yelling. The mouse go out
to investigate, and cat caught the mouse. The mouse asked the cat I thought I heard a dog. The cat
reply, yes you did. My teacher was right, one language is not enough today.

67
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ρρ + dρ
P

P + dP
c

sound wave
dU

Fig. -4.1. A very slow moving piston in a still
gas.

The people had recognized for several hun-
dred years that sound is a variation of pres-
sure. The ears sense the variations by fre-
quency and magnitude which are trans-
ferred to the brain which translates to
voice. Thus, it raises the question: what
is the speed of the small disturbance travel
in a “quiet” medium. This velocity is re-
ferred to as the speed of sound.

To answer this question consider a piston moving from the left to the right at
a relatively small velocity (see Figure 4.1). The information that the piston is moving
passes thorough a single “pressure pulse.” It is assumed that if the velocity of the piston
is infinitesimally small, the pulse will be infinitesimally small. Thus, the pressure and
density can be assumed to be continuous.

ρρ + dρ
P

P + dP

cdU c− dU
C.V.

Fig. -4.2. Stationary sound wave and gas moves
relative to the pulse.

In the control volume it is conve-
nient to look at a control volume which is
attached to a pressure pulse. Applying the
mass balance yields

ρc = (ρ + dρ)(c− dU) (4.1)

or when the higher term dUdρ is neglected
yields

ρdU = cdρ =⇒ dU =
cdρ

ρ
(4.2)

From the energy equation (Bernoulli’s equation), assuming isentropic flow and neglect-
ing the gravity results

(c− dU)2 − c2

2
+

dP

ρ
= 0 (4.3)

neglecting second term (dU2) yield

−cdU +
dP

ρ
= 0 (4.4)

Substituting the expression for dU from equation (4.2) into equation (4.4) yields

c2

(
dρ

ρ

)
=

dP

ρ
=⇒ c2 =

dP

dρ

Sound Speed

(4.5)

An expression is needed to represent the right hand side of equation (4.5). For an ideal
gas, P is a function of two independent variables. Here, it is considered that P = P (ρ, s)
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where s is the entropy. The full differential of the pressure can be expressed as follows:

dP =
∂P

∂ρ

∣∣∣∣
s

dρ +
∂P

∂s

∣∣∣∣
ρ

ds (4.6)

In the derivations for the speed of sound it was assumed that the flow is isentropic,
therefore it can be written

dP

dρ
=

∂P

∂ρ

∣∣∣∣
s

(4.7)

Note that the equation (4.5) can be obtained by utilizing the momentum equa-
tion instead of the energy equation.

Example 4.1:
Demonstrate that equation (4.5) can be derived from the momentum equation.

Solution

The momentum equation written for the control volume shown in Figure (4.2) is

P
F︷ ︸︸ ︷

(P + dP )− P =

R
cs

U (ρ U dA)︷ ︸︸ ︷
(ρ + dρ)(c− dU)2 − ρ c2 (4.8)

Neglecting all the relative small terms results in

dP = (ρ + dρ)

(
c2 −»»»:∼ 0

2cdU +»»»»»:∼ 0
dU2

)
− ρc2 (4.9)

And finally it becomes

dP = c2 dρ (4.10)

This yields the same equation as (4.5).
End Solution

4.3 Speed of Sound in Ideal and Perfect Gases

The speed of sound can be obtained easily for the equation of state for an ideal gas (also
perfect gas as a sub set) because of a simple mathematical expression. The pressure
for an ideal gas can be expressed as a simple function of density, ρ, and a function
“molecular structure” or ratio of specific heats, k namely

P = constant× ρk (4.11)
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and hence

c =

√
dP

dρ
= k × constant× ρk−1 = k ×

P︷ ︸︸ ︷
constant× ρk

ρ

= k × P

ρ
(4.12)

Remember that P/ρ is defined for an ideal gas as R T , and equation (4.12) can be
written as

c =
√

k R T

Gas Speed Sound

(4.13)

Example 4.2:
Calculate the speed of sound in water vapor at 20[bar] and 350◦C, (a) utilizes the
steam table (b) assuming ideal gas.

Solution

The solution can be estimated by using the data from steam table3

c ∼
√

∆P

∆ρ
s=constant

(4.14)

At 20[bar] and 350◦C: s = 6.9563
[

kJ
K kg

]
ρ = 6.61376

[
kg
m3

]

At 18[bar] and 350◦C: s = 7.0100
[

kJ
K kg

]
ρ = 6.46956

[
kg
m3

]

At 18[bar] and 300◦C: s = 6.8226
[

kJ
K kg

]
ρ = 7.13216

[
kg
m3

]

After interpretation of the temperature:

At 18[bar] and 335.7◦C: s ∼ 6.9563
[

kJ
K kg

]
ρ ∼ 6.94199

[
kg
m3

]

and substituting into the equation yields

c =

√
200000
0.32823

= 780.5
[ m

sec

]
(4.15)

for ideal gas assumption (data taken from Van Wylen and Sontag, Classical Ther-
modynamics, table A 8.)

c =
√

k R T ∼
√

1.327× 461× (350 + 273) ∼ 771.5
[ m

sec

]

3This data is taken from Van Wylen and Sontag “Fundamentals of Classical Thermodynamics” 2nd
edition
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Note that a better approximation can be done with a steam table, and it
End Solution

Example 4.3:
The temperature in the atmosphere can be assumed to be a linear function of the height
for some distances. What is the time it take for sound to travel from point “A” to point
“B” under this assumption.?

Solution

The temperature is denoted at “A” as TA and temperature in “B” is TB . The distance
between “A” and “B” is denoted as h.

T (x) = TA +
x

h
(TB − TA) = TA +

x

h

(
TB

TA
− 1

)
TA (4.16)

Where x is the variable distance. It can be noticed4 that the controlling dimension is
the ratio of the edge temperatures. It can be further noticed that the square root of
this ratio is affecting parameter and thus this ratio can be defined as

ω =
√

TB

TA
(4.17)

Using the definition (4.17) in equation (4.16) results in

T (x) = TA

(
1 +

ω2 − 1
h

x

)
(4.18)

It should be noted that velocity is provided as a function of the distance and not the
time (another reverse problem). For an infinitesimal time d τ is equal to

d τ =
dx√

k R T (x)
=

dx√
k R TA

(
1 +

ω2 − 1
h

x

)

or the integration the about equation as

∫ t

0

d τ =

-
-

h

0

dx√
k R TA

(
1 +

ω2 − 1
h

x

)

The result of the integration of the above equation yields

tcorrected =
2 h

(w + 1)
√

k R TA

(4.19)

4This suggestion was proposed by Heru Reksoprodjo from Helsinki University of Technology, Finland.
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For assumption of constant temperature the time is

t =
h√

k R T̄A

(4.20)

Hence the correction factor

tcorrected

t
=

2
(w + 1)

(4.21)

This correction factor approaches one when TB −→ TA because ω −→ 1.
Another possible question5 to find the temperature, TC , where The “standard”

equation can be used.

h√
k R TC

=
2 h

(w + 1)
√

k R TA

The above equation leads to

TC =
TA + TB + 2

√
TA TB

4

The explanation to the last equation is left as exercise to the reader.
End Solution

4.4 Speed of Sound in Real Gases
The ideal gas model can be improved by introducing the compressibility factor. The
compressibility factor represents the deviation from the ideal gas.

Thus, a real gas equation can be expressed in many cases (see also page 32 ) as

P = z ρ R T (4.22)

The speed of sound of any gas is provided by equation (4.7). To obtain the expression
for a gas that obeys the law expressed by (4.22) some mathematical expressions are
needed. Recalling from thermodynamics, the Gibbs function (4.23) is used to obtain

Tds = dh− dP

ρ
(4.23)

The definition of pressure specific heat for a pure substance is

Cp =
(

∂h

∂T

)

P

= T

(
∂s

∂T

)

P

(4.24)

The definition of volumetric specific heat for a pure substance is

Cv =
(

∂u

∂T

)

ρ

= T

(
∂s

∂T

)

ρ

(4.25)

5Indirectly was suggested by Heru Reksoprodjo.
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Fig. -4.3. The compressibility chart.

From thermodynamics, it can be shown 6

dh = CpdT +
[
v − T

(
∂v

∂T

)

P

]
(4.26)

The specific volumetric is the inverse of the density as v = z R T/P and thus

(
∂v

∂T

)

P

=




∂

(
z R T

P

)

∂T




P

=
R T

P

(
∂z

∂T

)

P

+
z R

P ½
½

½
½½>

1(
∂T

∂T

)

P

(4.27)

6See Van Wylen p. 372 SI version, perhaps to insert the discussion here.
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Substituting the equation (4.27) into equation (4.26) results

dh = Cp dT +




v − T




v
z︷︸︸︷

R T

P

(
∂z

∂T

)

P

+

v
T︷︸︸︷

z R

P







dP (4.28)

Simplifying equation (4.28) to became

dh = Cp dT −
[
T v

z

(
∂z

∂T

)

P

]
dP = CpdT − T

z

(
∂z

∂T

)

P

dP

ρ
(4.29)

Utilizing Gibbs equation (4.23)

Tds =

dh︷ ︸︸ ︷
CpdT − T

z

(
∂z

∂T

)

P

dP

ρ
−dP

ρ
= CpdT − dP

ρ

[
T

z

(
∂z

∂T

)

P

+ 1
]

=Cp dT − dP

P

z R T︷︸︸︷
P

ρ

[
T

z

(
∂z

∂T

)

P

+ 1
]

(4.30)

Letting ds = 0 for isentropic process results in

dT

T
=

dP

P

R

Cp

[
z + T

(
∂z

∂T

)

P

]
(4.31)

Equation (4.31) can be integrated by parts. However, it is more convenient to express
dT/T in terms of Cv and dρ/ρ as follows

dT

T
=

dρ

ρ

R

Cv

[
z + T

(
∂z

∂T

)

ρ

]
(4.32)

Equating the right hand side of equations (4.31) and (4.32) results in

dρ

ρ

R

Cv

[
z + T

(
∂z

∂T

)

ρ

]
=

dP

P

R

Cp

[
z + T

(
∂z

∂T

)

P

]
(4.33)

Rearranging equation (4.33) yields

dρ

ρ
=

dP

P

Cv

Cp




z + T

(
∂z

∂T

)

P

z + T

(
∂z

∂T

)

ρ


 (4.34)
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If the terms in the braces are constant in the range under interest in this study, equation
(4.34) can be integrated. For short hand writing convenience, n is defined as

n =

k︷︸︸︷
Cp

Cv




z + T

(
∂z

∂T

)

ρ

z + T

(
∂z

∂T

)

P


 (4.35)

Note that n approaches k when z → 1 and when z is constant. The integration of
equation (4.34) yields

(
ρ1

ρ2

)n

=
P1

P2
(4.36)

Equation (4.36) is similar to equation (4.11). What is different in these derivations
is that a relationship between coefficient n and k was established. This relationship
(4.36) isn’t new, and in–fact any thermodynamics book shows this relationship. But
the definition of n in equation (4.35) provides a tool to estimate n. Now, the speed of
sound for a real gas can be obtained in the same manner as for an ideal gas.

dP

dρ
=
√

n z R T

Real Gas Sound Speed

(4.37)

Example 4.4:
Calculate the speed of sound of air at 30◦C and atmospheric pressure ∼ 1[bar]. The
specific heat for air is k = 1.407, n = 1.403, and z = 0.995.

Make the calculation based on the ideal gas model and compare these calculations
to real gas model (compressibility factor). Assume that R = 287[j/kg/K].

Solution

According to the ideal gas model the speed of sound should be

c =
√

k R T =
√

1.407× 287× 300 ∼ 348.1[m/sec]

For the real gas first coefficient n = 1.403 has

c =
√

z n R T =
√

1.403× 0.995× 287× 300 = 346.7[m/sec]

End Solution

The correction factor for air under normal conditions (atmospheric conditions or
even increased pressure) is minimal on the speed of sound. However, a change in tem-
perature can have a dramatical change in the speed of sound. For example, at relative
moderate pressure but low temperature common in atmosphere, the compressibility fac-

tor, z = 0.3 and n ∼ 1 which means that speed of sound is only
√

0.3
1.4 about factor of

(0.5) to calculated by ideal gas model.
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4.5 Speed of Sound in Almost Incompressible Liquid

Even liquid normally is assumed to be incompressible in reality has a small and important
compressible aspect. The ratio of the change in the fractional volume to pressure or
compression is referred to as the bulk modulus of the material. For example, the
average bulk modulus for water is 2.2× 109 N/m2. At a depth of about 4,000 meters,
the pressure is about 4× 107 N/m2. The fractional volume change is only about 1.8%
even under this pressure nevertheless it is a change.

The compressibility of the substance is the reciprocal of the bulk modulus. The
amount of compression of almost all liquids is seen to be very small as given in Table
(4.5). The mathematical definition of bulk modulus as following

B = ρ
dP

dρ
(4.38)

In physical terms can be written as

c =

√
elastic property

inertial property
=

√
B

ρ

Liquid/Solid Sound Speed

(4.39)

For example for water

c =

√
2.2× 109N/m2

1000kg/m3
= 1493m/s

This agrees well with the measured speed of sound in water, 1482 m/s at 20◦C.
Many researchers have looked at this velocity, and for purposes of comparison it is given
in Table (4.5)

The effect of impurity and temperature is relatively large, as can be observed
from the equation (4.40). For example, with an increase of 34 degrees from 0◦C there
is an increase in the velocity from about 1430 m/sec to about 1546 [m/sec]. According
to Wilson7, the speed of sound in sea water depends on temperature, salinity, and
hydrostatic pressure.

Wilson’s empirical formula appears as follows:

c(S, T, P ) = c0 + cT + cS + cP + cSTP , (4.40)

where c0 = 1449.14[m/sec] is about clean/pure water, cT is a function temper-
ature, and cS is a function salinity, cP is a function pressure, and cSTP is a correction
factor between coupling of the different parameters.

7 J. Acoust. Soc. Amer., 1960, vol.32, N 10, p. 1357. Wilson’s formula is accepted by the National
Oceanographic Data Center (NODC) USA for computer processing of hydrological information.
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Remark reference Value [m/sec]

Fresh Water (20 ◦C) Cutnell, John D. & Kenneth W.
Johnson. Physics. New York: Wi-
ley, 1997: 468.

1492

Distilled Water at (25 ◦C) The World Book Encyclopedia.
Chicago: World Book, 1999. 601

1496

Water distilled Handbook of Chemistry and
Physics. Ohio: Chemical Rubber
Co., 1967-1968:E37

1494

Table -4.1. Water speed of sound from different sources

material reference Value [m/sec]

Glycerol 1904

Sea water 25◦C 1533

Mercury 1450

Kerosene 1324

Methyl alcohol 1143

Carbon tetrachloride 926

Table -4.2. Liquids speed of sound, after Aldred, John, Manual of Sound Recording, London:
Fountain Press, 1972

4.5.1 Sound in Variable Compressible Liquids

The derivations for the calculations of the speed of sound were first presented in Potto
Project book Basics of Fluid Mechanics, 2009, Potto Project.). It was found that Pushka
equation describes the density in a deep sea. The density varies due to the compression
created by the liquid above. Pushka equation is written as as for non-geological system
in dimensionless form as

ρ

ρ0
=

√√√√
1

2 g ρ0 x

BT
+ 1

Pushka Equation

(4.41)

Equation (4.41) models only constant bulk modulus situations. The local speed of
sound is described by equation (4.39).
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The sound speed changes since the density changes with the depth of liquid. The
way to calculate speed of propagation by look at infinitesimal distance. The equation
for the sound speed is taken here as correct for very local point. However, the density
is different for every point since the density varies and the density is a function of the
depth. The speed of sound at any depth point, x, is

c =

√√√√√√√

BT

ρ0

√√√√
1

2 g ρ0 x

BT
+ 1

=

√
BT

ρ0

√√√√√√√

1√√√√
1

2 g ρ0 x

BT
+ 1

(4.42)

Denoting a dimensionless length as D = 2 g ρ0 x/BT and after simplification equation
(4.42) becomes

c =

“standard
term”

︷ ︸︸ ︷√
BT

ρ0

correction
factor

︷ ︸︸ ︷
4
√

D + 1 (4.43)

The time for the sound to travel a small interval distance, dx is

dτ =
dx√

BT

ρ0

4
√

D + 1
(4.44)

The time takes for the sound the travel the whole distance is the integration of infinites-
imal time

t =

-
-

D

0

dx√
BT

ρ0

4
√

D + 1
=⇒ t =

-
-

D

0

BT

2 g ρ0

dD︷ ︸︸ ︷
2 g ρ0 dx

BT√
BT

ρ0

4
√

D + 1
(4.45)

Or converting equation (4.45) to dimensionless form and changing the limits of inte-
gration as

2 g
√

ρ0 t√
BT

=
∫ 2 g ρ0 D

BT

0

dD
4
√

D + 1
(4.46)

The solution of equation (4.46) is

2 g
√

ρ0 t√
BT

=
4

(
2 g ρ0 D

BT
+ 1

)3
4

3
− 4

3
=

4
3


 4

√(
2 g ρ0 D

BT
+ 1

)3

− 1


 (4.47)
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The time to sound wave to travel, when the compressibility of the liquid is ignored can
be written as

t =
D√
BT

ρ0

=
D
√

ρ0√
BT

=⇒ 2 g
√

ρ0 t√
BT

=
2 g ρ0 D

BT
(4.48)

The ratio between the corrected estimated to the standard calculation is

correction ratio =
tcorrect

tstandard
=

2 g ρ0 D

BT

4
3


 4

√(
2 g ρ0 D

BT
+ 1

)3

− 1




(4.49)

It easy to show that

lim
D→0

(. . . ) = lim
2 g ρ0 D

BT
→0

2 g ρ0 D

BT

4
3


 4

√(
2 g ρ0 D

BT
+ 1

)3

− 1




= 1 (4.50)

Figure 4.50 exhibits the correction that has to be applied when the a constant
density assumption compared to a variable density model. The example below demon-
strates this point.

Example 4.5:
Assume that the deepest point in the ocean off the Marianas Islands (10,923 [m]) is
under a pure water at constant temperature. Calculate the time that sound travels to
bottom and back when the density is assumed to be constant. Calculate the time that
sound travels to bottom and back when the density is assumed to be variable. Compare
constant density assumption to variable density to the bulk modulus is considered and
value 2.15 109 [N/m].

Solution

Under the assumption of constant density, and consequently the sound wave velocity
(see equation (4.48)), the traveling time is

t =
D√
BT

ρ0

=
2× 10, 923√
2.15 109/1000

= 21846/1459.45 ∼ 14.96[sec]
(4.V.a)

If the variable density model is employed, then the dimensionless parameter is

2 g ρ0 D

BT
=

2× 9.81× 1000× 10923
2.15 109

= 0.09967 ∼ 0.01 (4.V.b)
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Fig. -4.4. The Correction Factor for Time of Sound Wave.

The correction factor according to equation (4.47)

correction
factor

4
3
×

[
(1 + 0.01)( 3/4)− 1

]
∼ 0.098 (4.V.c)

The significance of these calculations is that error that the deepest place is less deep
by about 100 [m].

End Solution

While the ocean calculations results in error of about %1, in geological scale the
error is more significant. The next section will be dealing the geological scale.

In summary, the speed of sound in liquids is about 3 to 5 relative to the speed of
sound in gases.

4.6 Speed of Sound in Solids
The situation with solids is considerably more complicated, with different speeds in
different directions, in different kinds of geometries, and differences between transverse
and longitudinal waves. Nevertheless, the speed of sound in solids is larger than in
liquids and definitely larger than in gases.
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Young’s Modulus for a representative value for the bulk modulus for steel is 160
109 N /m2.

material reference Value [m/sec]

Diamond 12000

Pyrex glass 5640

Steel longitudinal wave 5790

Steel transverse shear 3100

Steel longitudinal wave (extensional
wave)

5000

Iron 5130

Aluminum 5100

Brass 4700

Copper 3560

Gold 3240

Lucite 2680

Lead 1322

Rubber 1600

Table -4.3. Solids speed of sound, after Aldred, John, Manual of Sound Recording, Lon-
don:Fountain Press, 1972

Speed of sound in solid of steel, using a general tabulated value for the bulk
modulus, gives a sound speed for structural steel of

c =

√
E

ρ
=

√
160× 109N/m2

7860Kg/m3
= 4512m/s (4.51)

Compared to one tabulated value the example values for stainless steel lays be-
tween the speed for longitudinal and transverse waves.

4.7 Sound Speed in Two Phase Medium

The gas flow in many industrial situations contains other particles. In actuality, there
could be more than one speed of sound for two phase flow. Indeed there is double
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chocking phenomenon in two phase flow. However, for homogeneous and under cer-
tain condition a single velocity can be considered. There can be several models that
approached this problem. For simplicity, it assumed that two materials are homoge-
neously mixed. Topic for none homogeneous mixing are beyond the scope of this book.
It further assumed that no heat and mass transfer occurs between the particles. In that
case, three extreme cases suggest themselves: the flow is mostly gas with drops of the
other phase (liquid or solid), about equal parts of gas and the liquid phase, and liquid
with some bubbles. The first case is analyzed.

The equation of state for the gas can be written as

Pa = ρa R Ta (4.52)

The average density can be expressed as

1
ρm

=
ξ

ρa
+

1− ξ

ρb
(4.53)

where ξ = ṁb

ṁ is the mass ratio of the materials. For small value of ξ equation (4.53)
can be approximated as

ρ

ρa
= 1 + m (4.54)

where m = ṁb

ṁa
is mass flow rate per gas flow rate.

The gas density can be replaced by equation (4.52) and substituted into equation
(4.54)

P

ρ
=

R

1 + m
T (4.55)

A approximation of addition droplets of liquid or dust (solid) results in reduction of R
and yet approximate equation similar to ideal gas was obtained. It must noticed that
m = constant. If the droplets (or the solid particles) can be assumed to have the
same velocity as the gas with no heat transfer or fiction between the particles isentropic
relation can be assumed as

P

ρa
k

= constant (4.56)

Assuming that partial pressure of the particles is constant and applying the second law
for the mixture yields

0 =

droplets︷ ︸︸ ︷
m C dT

T
+

gas︷ ︸︸ ︷
Cp

dT

T
−R

dP

P
=

(Cp + mC) dT

T
−R

dP

P
(4.57)

Therefore, the mixture isentropic relationship can be expressed as

P

“
γ − 1

γ

”

T
= constant (4.58)
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where

γ − 1
γ

=
R

Cp + mC
(4.59)

Recalling that R = Cp − Cv reduces equation (4.59) into

γ =
Cp + m C

Cv + mC
(4.60)

In a way the definition of γ was so chosen that effective specific pressure heat and
effective specific volumetric heat are

Cp+mC
1+m and Cv+mC

1+m respectively. The correction
factors for the specific heat is not linear.

Since the equations are the same as before hence the familiar equation for speed
of sound can be applied as

c =
√

γ Rmix T

Two Phase Sound Speed

(4.61)

It can be noticed that Rmix and γ are smaller than similar variables in a pure gas.
Hence, this analysis results in lower speed of sound compared to pure gas. Generally, the
velocity of mixtures with large gas component is smaller of the pure gas. For example,
the velocity of sound in slightly wet steam can be about one third of the pure steam
speed of sound.

Meta
For a mixture of two phases, speed of sound can be expressed as

c2 =
∂P

∂ρ
=

∂P [f(X)]
∂ρ

(4.62)

where X is defined as

X =
s− sf (PB)

sfg(PB)
(4.63)

Meta End

4.8 The Dimensional Effect of the Speed of Sound
What is the significance of the speed of sound? This speed of sound determines what
regime the flow will be. In Chapter Dimensional Analsis of Fundamentals of Compress-
ible Flow boo it was shown that Mach number is important parameter. It will be shown
later in this Chapter that when Mach number is around 0.25-0.3 a significant change
occur in the situation of flow. To demonstrate this point, consider a two dimensional
situation where a particle is moving from the left to the right. A particle movement
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creates a pressure change which travels toward outside in equal speed relative to the
particle. Figure 4.5 depicts an object with three different relative velocities. Figure
4.5(a) demonstrates that the whole surroundings is influenced by the object (depicted
by red color). While Figure 4.5 (b) that there small zone a head object that is “aware”
if the object arriving. In Figure 4.5 (c) the zone that aware of the object is practically
zero.

(a) Object travels at 0.005 of
the speed of sound

(b) Object travels at 0.05 of the speed of
sound

(c) Object travels at 0.15 of the speed of sound

Fig. -4.5. Moving object at three relative velocities. The gray point in the first circle is the
initial point the object. The finial point is marked by red circled with gray filled. Notice that
the circle line thickness is increase with the time i.e the more green wider circle line thickness.
The transition from the blue fresher lines to the green older lines is properly marked.

In fact, when the object velocity is about or larger than the speed of sound then
the object arrive to location where the fluid does not aware or informed about the object.
The reason that in gas the compressibility plays significant role is because the ratio of
the object or fluid velocity compared to speed of sound. In gases the speed of sound
is smaller as compare to liquid and defendtly to solid. Hence, gases are media where
compressebilty effect must be considered in realtionshp compressebilty. There are some
how defined the Mach cone as the shape of object movement approaching to one. This
shape has angle and it related to Mach angle. This angle related to Prantle–Meyer
angle that will bedefined in the later Chapter.
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Isentropic Flow

A
∗

Aexit

P

P0

distance, x

M > 1 Supersonic

Subsonic
M < 1

PB = P0

Fig. -5.1. Flow of a compressible sub-
stance (gas) through a converging–
diverging nozzle.

In this chapter a discussion on a steady state flow
through a smooth and continuous area flow rate
is presented. A discussion about the flow through
a converging–diverging nozzle is also part of this
chapter. The isentropic flow models are important
because of two main reasons: One, it provides the
information about the trends and important pa-
rameters. Two, the correction factors can be in-
troduced later to account for deviations from the
ideal state.

5.1 Stagnation State for Ideal Gas
Model

5.1.1 General Relationship

It is assumed that the flow is one–dimensional. Figure (5.1) describes a gas flow through
a converging–diverging nozzle. It has been found that a theoretical state known as
the stagnation state is very useful in simplifying the solution and treatment of the flow.
The stagnation state is a theoretical state in which the flow is brought into a complete
motionless condition in isentropic process without other forces (e.g. gravity force).
Several properties that can be represented by this theoretical process which include
temperature, pressure, and density et cetera and denoted by the subscript “0.”

First, the stagnation temperature is calculated. The energy conservation can

85
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be written as

h +
U2

2
= h0 (5.1)

Perfect gas is an ideal gas with a constant heat capacity, Cp. For perfect gas equation
(5.1) is simplified into

CpT +
U2

2
= CpT0 (5.2)

Again it is common to denote T0 as the stagnation temperature. Recalling from ther-
modynamic the relationship for perfect gas

R = Cp − Cv (5.3)

and denoting k ≡ Cp ÷ Cv then the thermodynamics relationship obtains the form

Cp =
kR

k − 1
(5.4)

and where R is a specific constant. Dividing equation (5.2) by (CpT ) yields

1 +
U2

2CpT
=

T0

T
(5.5)

Now, substituting c2 = k R T or T = c2/k R equation (5.5) changes into

1 +
k R U2

2Cpc2
=

T0

T
(5.6)

By utilizing the definition of k by equation (2.24) and inserting it into equation (5.6)
yields

1 +
k − 1

2
U2

c2
=

T0

T
(5.7)

It very useful to convert equation (5.6) into a dimensionless form and denote
Mach number as the ratio of velocity to speed of sound as

M ≡ U

c

Mach Number Definition

(5.8)

Inserting the definition of Mach number (5.8) into equation (5.7) reads

T0

T
= 1 +

k − 1
2

M2

Isentropic Temperature relationship

(5.9)
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T0
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velocity
P0
ρ0

Q
B

T0

P0
ρ0

Fig. -5.2. Perfect gas flows through a tube

The usefulness of Mach number and
equation (5.9) can be demonstrated by the fol-
lowing simple example. In this example a gas
flows through a tube (see Figure 5.2) of any
shape can be expressed as a function of only
the stagnation temperature as opposed to the
function of the temperatures and velocities.

The definition of the stagnation state
provides the advantage of compact writing. For example, writing the energy equation
for the tube shown in Figure (5.2) can be reduced to

Q̇ = Cp (T0B − T0A) ṁ (5.10)

The ratio of stagnation pressure to the static pressure can be expressed as the
function of the temperature ratio because of the isentropic relationship as

P0

P
=

(
T0

T

) k
k−1

=
(

1 +
k − 1

2
M2

) k
k−1

Isentropic Pressure Definition

(5.11)

In the same manner the relationship for the density ratio is

ρ0

ρ
=

(
T0

T

) 1
k−1

=
(

1 +
k − 1

2
M2

) 1
k−1

Isentropic Density

(5.12)

New useful definitions are introduced for the case when M = 1 and denoted by su-
perscript “∗.” The special cases of ratio of the star values to stagnation values are
dependent only on the heat ratio as the following:

T ∗

T0
=

c∗2

c0
2

V2

V1
=

(
T1

T2

) 1
k−1

=
(

ρ1

ρ2

)
=

(
P1

P2

) 1
k

P ∗

P0
=

(
2

k + 1

) k
k−1

ρ∗

ρ0
=

(
2

k + 1

) 1
k−1

Star Relationship

(5.13)

Using all the definitions above relationship between the stagnation properties to star
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speed of sound are

c∗ =

√
k R

2 T0

k + 2
(5.14)
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Static Properties As A Function of Mach Number
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Fig. -5.3. The stagnation properties as a function of the Mach number, k = 1.4

calculations/stagnationHTML Title 0.5variableArea:fig:basicStation properties
as f(M)The stagnation properties as a function of the Mach number, k=1.4.

5.1.2 Relationships for Small Mach Number

Even with today’s computers a simplified method can reduce the tedious work involved in
computational work. In particular, the trends can be examined with analytical methods.
It further will be used in the book to examine trends in derived models. It can be noticed
that the Mach number involved in the above equations is in a square power. Hence, if
an acceptable error is of about %1 then M < 0.1 provides the desired range. Further, if
a higher power is used, much smaller error results. First it can be noticed that the ratio
of temperature to stagnation temperature, T

T0
is provided in power series. Expanding
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of the equations according to the binomial expansion of

(1 + x)n = 1 + nx +
n(n− 1)x2

2!
+

n(n− 1)(n− 2)x3

3!
+ · · · (5.15)

will result in the same fashion

P0

P
= 1 +

(k − 1)M2

4
+

kM4

8
+

2(2− k)M6

48
· · · (5.16)

ρ0

ρ
= 1 +

(k − 1)M2

4
+

kM4

8
+

2(2− k)M6

48
· · · (5.17)

The pressure difference normalized by the velocity (kinetic energy) as correction factor
is

P0 − P
1
2ρU2

= 1 +

compressibility correction︷ ︸︸ ︷
M2

4
+

(2− k)M4

24
+ · · · (5.18)

From the above equation, it can be observed that the correction factor approaches
zero when M −→ 0 and then equation (5.18) approaches the standard equation for
incompressible flow.

The definition of the star Mach is ratio of the velocity and star speed of sound
at M = 1.

M∗ =
U

c∗
=

√
k + 1

2
M

(
1− k − 1

4
M2 + · · ·

)
(5.19)

P0 − P

P
=

k M2

2

(
1 +

M2

4
+ · · ·

)
(5.20)

ρ0 − ρ

ρ
=

M2

2

(
1− k M2

4
+ · · ·

)
(5.21)

The normalized mass rate becomes

ṁ

A
=

√
k P0

2M2

RT0

(
1 +

k − 1
4

M2 + · · ·
)

(5.22)

The ratio of the area to star area is

A

A∗
=

(
2

k + 1

) k+1
2(k−1)

(
1
M

+
k + 1

4
M +

(3− k)(k + 1)
32

M3 + · · ·
)

(5.23)

5.2 Isentropic Converging-Diverging Flow in Cross Section
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Fig. -5.4. Control volume inside a converging-
diverging nozzle.

The important sub case in this chapter
is the flow in a converging–diverging noz-
zle. The control volume is shown in Fig-
ure (5.4). There are two models that as-
sume variable area flow: First is isentropic
and adiabatic model. Second is isentropic
and isothermal model. Clearly, the stagna-
tion temperature, T0, is constant through
the adiabatic flow because there isn’t heat
transfer. Therefore, the stagnation pres-
sure is also constant through the flow be-
cause the flow isentropic. Conversely, in
mathematical terms, equation (5.9) and equation (5.11) are the same. If the right hand
side is constant for one variable, it is constant for the other. In the same argument, the
stagnation density is constant through the flow. Thus, knowing the Mach number or
the temperature will provide all that is needed to find the other properties. The only
properties that need to be connected are the cross section area and the Mach number.
Examination of the relation between properties can then be carried out.

5.2.1 The Properties in the Adiabatic Nozzle

When there is no external work and heat transfer, the energy equation, reads

dh + UdU = 0 (5.24)

Differentiation of continuity equation, ρAU = ṁ = constant, and dividing by the
continuity equation reads

dρ

ρ
+

dA

A
+

dU

U
= 0 (5.25)

The thermodynamic relationship between the properties can be expressed as

T ds = dh− dP

ρ
(5.26)

For isentropic process ds ≡ 0 and combining equations (5.24) with (5.26) yields

dP

ρ
+ UdU = 0 (5.27)

Differentiation of the equation state (perfect gas), P = ρRT , and dividing the results
by the equation of state (ρRT ) yields

dP

P
=

dρ

ρ
+

dT

T
(5.28)
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Obtaining an expression for dU/U from the mass balance equation (5.25) and using it
in equation (5.27) reads

dP

ρ
− U2

dU
U︷ ︸︸ ︷[

dA

A
+

dρ

ρ

]
= 0 (5.29)

Rearranging equation (5.29) so that the density, ρ, can be replaced by the static pressure,
dP/ρ yields

dP

ρ
= U2

(
dA

A
+

dρ

ρ

dP

dP

)
= U2




dA

A
+

1
c2︷︸︸︷
dρ

dP

dP

ρ


 (5.30)

Recalling that dP/dρ = c2 and substitute the speed of sound into equation (5.30) to
obtain

dP

ρ

[
1−

(
U

c

)2
]

= U2 dA

A
(5.31)

Or in a dimensionless form

dP

ρ

(
1−M2

)
= U2 dA

A
(5.32)

Equation (5.32) is a differential equation for the pressure as a function of the cross sec-
tion area. It is convenient to rearrange equation (5.32) to obtain a variables separation
form of

dP =
ρU2

A

dA

1−M2
(5.33)

The pressure Mach number relationship

Before going further in the mathematical derivation it is worth looking at the physical
meaning of equation (5.33). The term ρU2/A is always positive (because all the three
terms can be only positive). Now, it can be observed that dP can be positive or
negative depending on the dA and Mach number. The meaning of the sign change for
the pressure differential is that the pressure can increase or decrease. It can be observed
that the critical Mach number is one. If the Mach number is larger than one than dP
has opposite sign of dA. If Mach number is smaller than one dP and dA have the same
sign. For the subsonic branch M < 1 the term 1/(1−M2) is positive hence

dA > 0 =⇒ dP > 0
dA < 0 =⇒ dP < 0
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From these observations the trends are similar to those in incompressible fluid. An
increase in area results in an increase of the static pressure (converting the dynamic
pressure to a static pressure). Conversely, if the area decreases (as a function of x)
the pressure decreases. Note that the pressure decrease is larger in compressible flow
compared to incompressible flow.

For the supersonic branch M > 1, the phenomenon is different. For M > 1
the term 1/1−M2 is negative and change the character of the equation.

dA > 0 ⇒ dP < 0
dA < 0 ⇒ dP > 0

This behavior is opposite to incompressible flow behavior.
For the special case of M = 1 (sonic flow) the value of the term 1−M2 = 0

thus mathematically dP → ∞ or dA = 0. Since physically dP can increase only in a
finite amount it must that dA = 0. It must also be noted that when M = 1 occurs
only when dA = 0. However, the opposite, not necessarily means that when dA = 0
that M = 1. In that case, it is possible that dM = 0 thus the diverging side is in the
subsonic branch and the flow isn’t choked.

The relationship between the velocity and the pressure can be observed from
equation (5.27) by solving it for dU .

dU = − dP

P U
(5.34)

From equation (5.34) it is obvious that dU has an opposite sign to dP (since the term
PU is positive). Hence the pressure increases when the velocity decreases and vice
versa.

From the speed of sound, one can observe that the density, ρ, increases with
pressure and vice versa (see equation (5.35)).

dρ =
1
c2

dP (5.35)

It can be noted that in the derivations of the above equations (5.34 - 5.35), the equation
of state was not used. Thus, the equations are applicable for any gas (perfect or
imperfect gas).

The second law (isentropic relationship) dictates that ds = 0 and from ther-
modynamics

ds = 0 = Cp
dT

T
−R

dP

P

and for perfect gas

dT

T
=

k − 1
k

dP

P
(5.36)

Thus, the temperature varies according to the same way that pressure does.
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The relationship between the Mach number and the temperature can be ob-
tained by utilizing the fact that the process is assumed to be adiabatic dT0 = 0.
Differentiation of equation (5.9), the relationship between the temperature and the
stagnation temperature becomes

dT0 = 0 = dT

(
1 +

k − 1
2

M2

)
+ T (k − 1)MdM (5.37)

and simplifying equation (5.37) yields

dT

T
= − (k − 1)MdM

1 + k−1
2 M2

(5.38)

Relationship Between the Mach Number and Cross Section Area

The equations used in the solution are energy (5.38), second law (5.36), state (5.28),
mass (5.25)1. Note, equation (5.32) isn’t the solution but demonstration of certain
properties on the pressure.

The relationship between temperature and the cross section area can be ob-
tained by utilizing the relationship between the pressure and temperature (5.36) and
the relationship of pressure and cross section area (5.32). First stage equation (5.38)
is combined with equation (5.36) and becomes

(k − 1)
k

dP

P
= − (k − 1)MdM

1 + k−1
2 M2

(5.39)

Combining equation (5.39) with equation (5.32) yields

1
k

ρU2

A
dA

1−M2

P
= − MdM

1 + k−1
2 M2

(5.40)

The following identify, ρU2 = kMP can be proved as

kM2P = k

M2︷︸︸︷
U2

c2

P︷︸︸︷
ρRT = k

U2

k R T

P︷ ︸︸ ︷
ρR T = ρU2 (5.41)

Using the identity in equation (5.41) changes equation (5.40) into

dA

A
=

M2 − 1
M

(
1 + k−1

2 M2
)dM (5.42)

1The momentum equation is not used normally in isentropic process, why?
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A
∗

dM

dxM,A

dA

dx

M

A

x

Fig. -5.5. The relationship between the cross
section and the Mach number on the subsonic
branch

Equation (5.42) is very important
because it relates the geometry (area)
with the relative velocity (Mach num-
ber). In equation (5.42), the factors
M

(
1 + k−1

2 M2
)

and A are positive re-
gardless of the values of M or A. There-
fore, the only factor that affects relation-
ship between the cross area and the Mach
number is M2 − 1. For M < 1 the Mach
number is varied opposite to the cross sec-
tion area. In the case of M > 1 the Mach
number increases with the cross section
area and vice versa. The special case is
when M = 1 which requires that dA = 0.
This condition imposes that internal2 flow
has to pass a converting–diverging device
to obtain supersonic velocity. This mini-
mum area is referred to as “throat.”

Again, the opposite conclusion that when dA = 0 implies that M = 1 is not
correct because possibility of dM = 0. In subsonic flow branch, from the mathematical
point of view: on one hand, a decrease of the cross section increases the velocity and
the Mach number, on the other hand, an increase of the cross section decreases the
velocity and Mach number (see Figure (5.5)).

5.2.2 Isentropic Flow Examples

Example 5.1:
Air is allowed to flow from a reservoir with temperature of 21◦C and with pressure of
5[MPa] through a tube. It was measured that air mass flow rate is 1[kg/sec]. At some
point on the tube static pressure was measured to be 3[MPa]. Assume that process is
isentropic and neglect the velocity at the reservoir, calculate the Mach number, velocity,
and the cross section area at that point where the static pressure was measured. Assume
that the ratio of specific heat is k = Cp/Cv = 1.4.

Solution

The stagnation conditions at the reservoir will be maintained throughout the tube
because the process is isentropic. Hence the stagnation temperature can be written
T0 = constant and P0 = constant and both of them are known (the condition at
the reservoir). For the point where the static pressure is known, the Mach number
can be calculated by utilizing the pressure ratio. With the known Mach number, the
temperature, and velocity can be calculated. Finally, the cross section can be calculated

2This condition does not impose any restrictions for external flow. In external flow, an object can
be moved in arbitrary speed.
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with all these information.

In the point where the static pressure known

P̄ =
P

P0
=

3[MPa]
5[MPa]

= 0.6

From Table (5.2) or from Figure (5.3) or utilizing the enclosed program, Potto-GDC,
or simply using the equations shows that

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.88639 0.86420 0.69428 1.0115 0.60000 0.60693 0.53105

With these values the static temperature and the density can be calculated.

T = 0.86420338× (273 + 21) = 254.076K

ρ =
ρ

ρ0

ρ0︷︸︸︷
P0

RT0
= 0.69428839× 5× 106[Pa]

287.0
[

J
kgK

]
× 294[K]

= 41.1416
[

kg

m3

]

The velocity at that point is

U = M

c︷ ︸︸ ︷√
k R T = 0.88638317×√1.4× 287× 254.076 = 283[m/sec]

The tube area can be obtained from the mass conservation as

A =
ṁ

ρU
= 8.26× 10−5[m3]

For a circular tube the diameter is about 1[cm].
End Solution

Example 5.2:
The Mach number at point A on tube is measured to be M = 23 and the static pressure
is 2[Bar]4. Downstream at point B the pressure was measured to be 1.5[Bar]. Calculate
the Mach number at point B under the isentropic flow assumption. Also, estimate the
temperature at point B. Assume that the specific heat ratio k = 1.4 and assume a
perfect gas model.

4This pressure is about two atmospheres with temperature of 250[K]
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Solution

With the known Mach number at point A all the ratios of the static properties to total
(stagnation) properties can be calculated. Therefore, the stagnation pressure at point
A is known and stagnation temperature can be calculated.

At M = 2 (supersonic flow) the ratios are

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

2.0000 0.55556 0.23005 1.6875 0.12780 0.21567 0.59309

With this information the pressure at point B can be expressed as

PA

P0
=

from the table
5.2 @ M = 2︷︸︸︷

PB

P0
×PA

PB
= 0.12780453× 2.0

1.5
= 0.17040604

The corresponding Mach number for this pressure ratio is 1.8137788 and TB = 0.60315132
PB

P0
= 0.17040879. The stagnation temperature can be “bypassed” to calculate the

temperature at point B

TB = TA ×

M=2︷︸︸︷
T0

TA
×

M=1.81..︷︸︸︷
TB

T0
= 250[K]× 1

0.55555556
× 0.60315132 ' 271.42[K]

End Solution

Example 5.3:
Gas flows through a converging–diverging duct. At point “A” the cross section area is
50 [cm2] and the Mach number was measured to be 0.4. At point B in the duct the
cross section area is 40 [cm2]. Find the Mach number at point B. Assume that the flow
is isentropic and the gas specific heat ratio is 1.4.

Solution

To obtain the Mach number at point B by finding the ratio of the area to the critical
area. This relationship can be obtained by

AB

A∗ =
AB

AA
× AA

A∗
=

40
50
×

from the Table 5.2︷ ︸︸ ︷
1.59014 = 1.272112

4Well, this question is for academic purposes, there is no known way for the author to directly
measure the Mach number. The best approximation is by using inserted cone for supersonic flow and
measure the oblique shock. Here it is subsonic and this technique is not suitable.
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With the value of AB

A∗ from the Table (5.2) or from Potto-GDC two solutions can be
obtained. The two possible solutions: the first supersonic M = 1.6265306 and second
subsonic M = 0.53884934. Both solution are possible and acceptable. The supersonic
branch solution is possible only if there where a transition at throat where M=1.

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

1.6266 0.65396 0.34585 1.2721 0.22617 0.28772

0.53887 0.94511 0.86838 1.2721 0.82071 1.0440

End Solution

Example 5.4:
Engineer needs to redesign a syringe for medical applications. They complained that
the syringe is “hard to push.” The engineer analyzes the flow and conclude that the
flow is choke. Upon this fact, what engineer should do with the syringe; increase the
pushing diameter or decrease the diameter? Explain.

Solution

This problem is a typical to compressible flow in the sense the solution is opposite the
regular intuition. The diameter should be decreased. The pressure in the choke flow in
the syringe is past the critical pressure ratio. Hence, the force is a function of the cross
area of the syringe. So, to decrease the force one should decrease the area.

End Solution

5.2.3 Mass Flow Rate (Number)

One of the important engineering parameters is the mass flow rate which for ideal gas
is

ṁ = ρUA =
P

RT
UA (5.43)

This parameter is studied here, to examine the maximum flow rate and to see what is
the effect of the compressibility on the flow rate. The area ratio as a function of the
Mach number needed to be established, specifically and explicitly the relationship for
the chocked flow. The area ratio is defined as the ratio of the cross section at any point
to the throat area (the narrow area). It is convenient to rearrange the equation (5.43)
to be expressed in terms of the stagnation properties as

ṁ

A
=

P

P0

P0U√
k R T

√
k

R

√
T0

T

1√
T0

=
P0√
T0

M

√
k

R

f(M,k)︷ ︸︸ ︷
P

P0

√
T0

T
(5.44)
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Expressing the temperature in terms of Mach number in equation (5.44) results in

ṁ

A
=

(
kMP0√
k R T0

)(
1 +

k − 1
2

M2

)− k+1
2(k−1)

Mass Flow Rate

(5.45)

It can be noted that equation (5.45) holds everywhere in the converging-diverging duct
and this statement also true for the throat. The throat area can be denoted as by A∗.
It can be noticed that at the throat when the flow is chocked or in other words M = 1
and that the stagnation conditions (i.e. temperature, pressure) do not change. Hence
equation (5.45) obtained the form

ṁ

A∗
=

(√
kP0√
RT0

) (
1 +

k − 1
2

)− k+1
2(k−1)

(5.46)

Since the mass flow rate is constant in the duct, dividing equations (5.46) by equation
(5.45) yields

A

A∗
=

1
M

(
1 + k−1

2 M2

k+1
2

) k+1
2(k−1)

Mass Flow Rate Ratio

(5.47)

Equation (5.47) relates the Mach number at any point to the cross section area ratio.
The maximum flow rate can be expressed either by taking the derivative of equa-

tion (5.46) in with respect to M and equating to zero. Carrying this calculation results
at M = 1.

(
ṁ

A∗

)

max

P0√
T0

=

√
k

R

(
k + 1

2

)− k+1
2(k−1)

(5.48)

For specific heat ratio, k = 1.4
(

ṁ

A∗

)

max

P0√
T0

∼ 0.68473√
R

(5.49)

The maximum flow rate for air (R = 287j/kgK) becomes,

ṁ
√

T0

A∗P0
= 0.040418 (5.50)

Equation (5.50) is known as Fliegner’s Formula on the name of one of the first engineers
who observed experimentally the choking phenomenon. It can be noticed that Fliegner’s
equation can lead to definition of the Fliegner’s Number.

ṁ
√

T0

A∗P0
=

ṁ

c0︷ ︸︸ ︷√
k R T0√

k RA∗P0

=
1√
R

Fn︷ ︸︸ ︷
ṁ c0

A∗P0

1√
k

(5.51)
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The definition of Fliegner’s number (Fn) is

FnFnFn ≡
√

R ṁ c0√
R A∗ P0

(5.52)

Utilizing Fliegner’s number definition and substituting it into equation (5.46)
results in

FnFnFn = k M

(
1 +

k − 1
2

M2

)− k+1
2(k−1)

Fliegner’s Number

(5.53)

and the maximum point for Fn at M = 1 is

FnFnFn = k

(
k + 1

2

)− k+1
2(k−1)

(5.54)

Example 5.5:
Why FnFnFn is zero at Mach equal to zero? Prove Fliegner number, FnFnFn is maximum at
M = 1.

“Naughty Professor” Problems in Isentropic Flow

To explain the material better some instructors invented problems, which have mostly
academic purpose, (see for example, Shapiro (problem 4.5)). While these problems
have a limit applicability in reality, they have substantial academic value and therefore
presented here. The situation where the mass flow rate per area given with one of
the stagnation properties and one of the static properties, e.g. P0 and T or T0 and
P present difficulty for the calculations. The use of the regular isentropic Table is
not possible because there isn’t variable represent this kind problems. For this kind of
problems a new Table was constructed and present here5.

The case of T0 and P

This case considered to be the simplest and is presented here first. Using energy
equation (5.9) and substituting for Mach number M = ṁ/(Aρ c) results in

T0

T
= 1 +

k − 1
2

(
ṁ

Aρc

)2

(5.55)

Multiplying equation (5.55) by T ρ2 result in

T0ρ
2 =

P
R︷︸︸︷
Tρ ρ +

1
k R︷ ︸︸ ︷(
T

c2

)
k − 1

2

(
ṁ

A

)2

(5.56)

5Since version 0.4.4 of this book.
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And further Rearranging equation (5.56) transformed it into

ρ2 =
Pρ

T0 R
+

k − 1
2 k R T0

(
ṁ

A

)2

(5.57)

Equation (5.57) is quadratic equation for density, ρ when all other variables are known.
It is convenient to change it into

ρ2 − P ρ

T0 R
− k − 1

2 k R T0

(
ṁ

A

)2

= 0 (5.58)

The only physical solution is when the density is positive and thus the only solution is

ρ =
1
2




P

R T0
+

√√√√√√

(
P

RT0

)2

+ 2
k − 1
k R T0

(
ṁ

A

)2

︸ ︷︷ ︸
↪→(M→0)→0




(5.59)

For almost incompressible flow the density is reduced and the familiar form of perfect
gas model is seen since stagnation temperature is approaching the static temperature

for very small Mach number (ρ =
P

R T0
). In other words, the terms for the terms over

the under–brace approaches zero when the flow rate (Mach number) is very small.
It is convenient to denote a new dimensionless density as

ρ̂ =
ρ
p

R T0

=
ρR T0

P
=

1
T̄

(5.60)

With this new definition equation (5.59) is transformed into

ρ̂ =
1
2


1 +

√
1 + 2

(k − 1) R T0

k P 2

(
ṁ

A

)2

 (5.61)

The dimensionless density now is related to a dimensionless group that is a function
of FnFnFn number and Mach number only! Thus, this dimensionless group is function of
Mach number only.

R T0

P 2

(
ṁ

A

)2

=
1
k

FnFnFn2︷ ︸︸ ︷
c0

2

P0
2

(
ṁ

A∗

)2

A∗P0
AP =f(M)︷ ︸︸ ︷(

A∗

A

)2 (
P0

P

)2

(5.62)

Thus,

R T0

P 2

(
ṁ

A

)2

=
FnFnFn2

k

(
A∗P0

AP

)2

(5.63)
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Hence, the dimensionless density is

ρ̂ =
1
2


1 +

√
1 + 2

(k − 1)Fn2

k2

(
A∗P0

AP

)2

 (5.64)

Again notice that the right hand side of equation (5.64) is only function of Mach number
(well, also the specific heat, k). And the values of AP

A∗P0
were tabulated in Table (5.2)

and Fn is tabulated in the next Table (5.1). Thus, the problems is reduced to finding
tabulated values.

Example 5.6:
The pitot tube measured the temperature of a flow which was found to be 300◦C. The
static pressure was measured to be 2 [Bar]. The flow rate is 1 [kg/sec] and area of the
conduct is 0.001 [m2]. Calculate the Mach number, the velocity of the stream, and
stagnation pressure. Assume perfect gas model with k=1.42.

Solution

This exactly the case discussed above in which the the ratio of mass flow rate to the area
is given along with the stagnation temperature and static pressure. Utilizing equation
(5.63) will provide the solution.

R T0

P 2

(
ṁ

A

)2

=
287× 373
200, 0002

×
(

1
0.001

)2

= 2.676275 (5.VI.a)

According to Table 5.1 the Mach number is about M = 0.74 · · · (the exact number
does not appear here demonstrate the simplicity of the solution). The Velocity can be
obtained from the

U = M c = M
√

k R T (5.VI.b)

The only unknown the equation (5.VI.b) is the temperature. However, the temperature
can be obtained from knowing the Mach number with the “regular” table. Utilizing the
regular table or Potto GDC one obtained.

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.74000 0.89686 0.77169 1.0677 0.69210 0.73898 0.54281

The temperature is then

T = (287 + 300)× 0.89686 ∼ 526.45K ∼ 239.4◦C (5.VI.c)

Hence the velocity is

U = 0.74×√1.42× 287× 526.45 ∼ 342.76[m/sec] (5.VI.d)
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In the same way the static pressure is

P0 = P

/
P

P0
∼ 2/0.692 ∼ 2.89[Bar] (5.VI.e)

The usage of Table 5.1 is only approximation and the exact value can be obtained
utilizing Potto GDC.

End Solution

The case of P0 and T

A similar problem can be described for the case of stagnation pressure, P0, and
static temperature, T .

First, it is shown that the dimensionless group is a function of Mach number only
(well, again the specific heat ratio, k also).

RT

P0
2

(
ṁ

A

)2

=
Fn2

k

(
A∗P0

AP

)2 (
T

T0

)(
P0

P

)2

(5.65)

It can be noticed that

Fn2

k
=

(
T

T0

)(
P0

P

)2

(5.66)

Thus equation (5.65) became

R T

P0
2

(
ṁ

A

)2

=
(

A∗ P0

A P

)2

(5.67)

The right hand side is tabulated in the “regular” isentropic Table such (5.2). This
example shows how a dimensional analysis is used to solve a problems without actually
solving any equations. The actual solution of the equation is left as exercise (this
example under construction). What is the legitimacy of this method? The explanation
simply based the previous experience in which for a given ratio of area or pressure ratio
(etcetera) determines the Mach number. Based on the same arguments, if it was shown
that a group of parameters depends only Mach number than the Mach is determined
by this group.

The method of solution for given these parameters is by calculating the PA
P0A∗ and

then using the table to find the corresponding Mach number.

Example 5.7:
Calculate the Mach number for flow with given stagnation pressure of 2 [Bar] and 27◦C.
It is given that the mass flow rate is 1 [kg/sec] and the cross section area is 0.01[m2].
Assume that the specific heat ratios, k =1.4.

Solution
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To solve this problem, the ratio in equation (5.67) has to be found.

(
A∗ P0

AP

)2

=
R T

P0
2

(
ṁ

A

)2

=
287× 300
2000002

(
1

0.01

)2

∼ 0.021525 (5.VII.a)

This mean that
A∗ P0

A P
∼ 0.1467. In the table it translate into

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.08486 0.99856 0.99641 6.8487 0.99497 6.8143 2.8679

End Solution

The case of ρ0 and T or P

The last case sometimes referred to as the “naughty professor’s question” case dealt
here is when the stagnation density given with the static temperature/pressure. First,
the dimensionless approach is used and later analytical method is discussed (under
construction).

1
R ρ0 P

(
ṁ

A

)2

=

c0
2︷ ︸︸ ︷

kRT0

k R P0 P0
P
P0

(
ṁ

A

)2

=
c0

2

k R P0
2 P

P0

(
ṁ

A

)2

=
Fn2

k

(
P0

P

)
(5.68)

The last case dealt here is of the stagnation density with static pressure and the following
is dimensionless group

1
R ρ0

2 T

(
ṁ

A

)2

=

c0
2︷ ︸︸ ︷

k R T0 T0

k R P0
2 T

(
ṁ

A

)2

=
c0

2T0

kRP0
2T

(
ṁ

A

)2

=
Fn2

k

(
T0

T

)
(5.69)

It was hidden in the derivations/explanations of the above analysis didn’t explicitly
state under what conditions these analysis is correct. Unfortunately, not all the anal-
ysis valid for the same conditions and is as the regular “isentropic” Table, (5.2). The
heat/temperature part is valid for enough adiabatic condition while the pressure con-
dition requires also isentropic process. All the above conditions/situations require to
have the perfect gas model as the equation of state. For example the first “naughty
professor” question is sufficient that process is adiabatic only (T0, P , mass flow rate
per area.).
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Table -5.1. Fliegner’s number and other parameters as a function of Mach number

M Fn ρ̂
(

P0A
∗

AP

)2
RT0

P2

(
ṁ
A

)2 1
Rρ0P

(
ṁ
A

)2 1
Rρ0

2T

(
ṁ
A

)2

0.00 1.4E−06 1.000 0.0 0.0 0.0 0.0

0.05 0.070106 1.000 0.00747 2.62E−05 0.00352 0.00351

0.10 0.14084 1.000 0.029920 0.000424 0.014268 0.014197

0.20 0.28677 1.001 0.12039 0.00707 0.060404 0.059212

0.21 0.30185 1.001 0.13284 0.00865 0.067111 0.065654

0.22 0.31703 1.001 0.14592 0.010476 0.074254 0.072487

0.23 0.33233 1.002 0.15963 0.012593 0.081847 0.079722

0.24 0.34775 1.002 0.17397 0.015027 0.089910 0.087372

0.25 0.36329 1.003 0.18896 0.017813 0.098460 0.095449

0.26 0.37896 1.003 0.20458 0.020986 0.10752 0.10397

0.27 0.39478 1.003 0.22085 0.024585 0.11710 0.11294

0.28 0.41073 1.004 0.23777 0.028651 0.12724 0.12239

0.29 0.42683 1.005 0.25535 0.033229 0.13796 0.13232

0.30 0.44309 1.005 0.27358 0.038365 0.14927 0.14276

0.31 0.45951 1.006 0.29247 0.044110 0.16121 0.15372

0.32 0.47609 1.007 0.31203 0.050518 0.17381 0.16522

0.33 0.49285 1.008 0.33226 0.057647 0.18709 0.17728

0.34 0.50978 1.009 0.35316 0.065557 0.20109 0.18992

0.35 0.52690 1.011 0.37474 0.074314 0.21584 0.20316

0.36 0.54422 1.012 0.39701 0.083989 0.23137 0.21703

0.37 0.56172 1.013 0.41997 0.094654 0.24773 0.23155

0.38 0.57944 1.015 0.44363 0.10639 0.26495 0.24674

0.39 0.59736 1.017 0.46798 0.11928 0.28307 0.26264

0.40 0.61550 1.019 0.49305 0.13342 0.30214 0.27926

0.41 0.63386 1.021 0.51882 0.14889 0.32220 0.29663
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Table -5.1. Fliegner’s number and other parameters as function of Mach number (continue)

M Fn ρ̂
(

P0A
∗

AP

)2
RT0

P2

(
ṁ
A

)2 1
Rρ0P

(
ṁ
A

)2 1
Rρ0

2T

(
ṁ
A

)2

0.42 0.65246 1.023 0.54531 0.16581 0.34330 0.31480

0.43 0.67129 1.026 0.57253 0.18428 0.36550 0.33378

0.44 0.69036 1.028 0.60047 0.20442 0.38884 0.35361

0.45 0.70969 1.031 0.62915 0.22634 0.41338 0.37432

0.46 0.72927 1.035 0.65857 0.25018 0.43919 0.39596

0.47 0.74912 1.038 0.68875 0.27608 0.46633 0.41855

0.48 0.76924 1.042 0.71967 0.30418 0.49485 0.44215

0.49 0.78965 1.046 0.75136 0.33465 0.52485 0.46677

0.50 0.81034 1.050 0.78382 0.36764 0.55637 0.49249

0.51 0.83132 1.055 0.81706 0.40333 0.58952 0.51932

0.52 0.85261 1.060 0.85107 0.44192 0.62436 0.54733

0.53 0.87421 1.065 0.88588 0.48360 0.66098 0.57656

0.54 0.89613 1.071 0.92149 0.52858 0.69948 0.60706

0.55 0.91838 1.077 0.95791 0.57709 0.73995 0.63889

0.56 0.94096 1.083 0.99514 0.62936 0.78250 0.67210

0.57 0.96389 1.090 1.033 0.68565 0.82722 0.70675

0.58 0.98717 1.097 1.072 0.74624 0.87424 0.74290

0.59 1.011 1.105 1.112 0.81139 0.92366 0.78062

0.60 1.035 1.113 1.152 0.88142 0.97562 0.81996

0.61 1.059 1.122 1.194 0.95665 1.030 0.86101

0.62 1.084 1.131 1.236 1.037 1.088 0.90382

0.63 1.109 1.141 1.279 1.124 1.148 0.94848

0.64 1.135 1.151 1.323 1.217 1.212 0.99507

0.65 1.161 1.162 1.368 1.317 1.278 1.044

0.66 1.187 1.173 1.414 1.423 1.349 1.094
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Table -5.1. Fliegner’s number and other parameters as function of Mach number (continue)

M Fn ρ̂
(

P0A
∗

AP

)2
RT0

P2

(
ṁ
A

)2 1
Rρ0P

(
ṁ
A

)2 1
Rρ0

2T

(
ṁ
A

)2

0.67 1.214 1.185 1.461 1.538 1.422 1.147

0.68 1.241 1.198 1.508 1.660 1.500 1.202

0.69 1.269 1.211 1.557 1.791 1.582 1.260

0.70 1.297 1.225 1.607 1.931 1.667 1.320

0.71 1.326 1.240 1.657 2.081 1.758 1.382

0.72 1.355 1.255 1.708 2.241 1.853 1.448

0.73 1.385 1.271 1.761 2.412 1.953 1.516

0.74 1.415 1.288 1.814 2.595 2.058 1.587

0.75 1.446 1.305 1.869 2.790 2.168 1.661

0.76 1.477 1.324 1.924 2.998 2.284 1.738

0.77 1.509 1.343 1.980 3.220 2.407 1.819

0.78 1.541 1.362 2.038 3.457 2.536 1.903

0.79 1.574 1.383 2.096 3.709 2.671 1.991

0.80 1.607 1.405 2.156 3.979 2.813 2.082

0.81 1.642 1.427 2.216 4.266 2.963 2.177

0.82 1.676 1.450 2.278 4.571 3.121 2.277

0.83 1.712 1.474 2.340 4.897 3.287 2.381

0.84 1.747 1.500 2.404 5.244 3.462 2.489

0.85 1.784 1.526 2.469 5.613 3.646 2.602

0.86 1.821 1.553 2.535 6.006 3.840 2.720

0.87 1.859 1.581 2.602 6.424 4.043 2.842

0.88 1.898 1.610 2.670 6.869 4.258 2.971

0.89 1.937 1.640 2.740 7.342 4.484 3.104

0.90 1.977 1.671 2.810 7.846 4.721 3.244

0.91 2.018 1.703 2.882 8.381 4.972 3.389
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Table -5.1. Fliegner’s number and other parameters as function of Mach number (continue)

M Fn ρ̂
(

P0A
∗

AP

)2
RT0

P2

(
ṁ
A

)2 1
Rρ0P

(
ṁ
A

)2 1
Rρ0

2T

(
ṁ
A

)2

0.92 2.059 1.736 2.955 8.949 5.235 3.541

0.93 2.101 1.771 3.029 9.554 5.513 3.699

0.94 2.144 1.806 3.105 10.20 5.805 3.865

0.95 2.188 1.843 3.181 10.88 6.112 4.037

0.96 2.233 1.881 3.259 11.60 6.436 4.217

0.97 2.278 1.920 3.338 12.37 6.777 4.404

0.98 2.324 1.961 3.419 13.19 7.136 4.600

0.99 2.371 2.003 3.500 14.06 7.515 4.804

1.00 2.419 2.046 3.583 14.98 7.913 5.016

Example 5.8:
A gas flows in the tube with mass flow rate of 0.1 [kg/sec] and tube cross section is
0.001[m2]. The temperature at chamber supplying the pressure to tube is 27◦C. At
some point the static pressure was measured to be 1.5[Bar]. Calculate for that point
the Mach number, the velocity, and the stagnation pressure. Assume that the process
is isentropic, k = 1.3, R = 287[j/kgK].

Solution

The first thing that need to be done is to find the mass flow per area and it is

ṁ

A
= 0.1/0.001 = 100.0[kg/sec/m2]

It can be noticed that the total temperature is 300K and the static pressure is 1.5[Bar].
The solution is based on section equations (5.59) through (5.64). It is fortunate that
Potto-GDC exist and it can be just plug into it and it provide that

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.17124 0.99562 0.98548 3.4757 0.98116 3.4102 1.5392

The velocity can be calculated as

U = M c =
√

k R T M = 0.17×√1.3× 287× 300× ∼ 56.87[m/sec]
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The stagnation pressure is

P0 =
P

P/P0
= 1.5/0.98116 = 1.5288[Bar]

End Solution

Flow with pressure losses

The expression for the mass flow rate (5.45) is appropriate regardless the flow is isen-
tropic or adiabatic. That expression was derived based on the theoretical total pressure
and temperature (Mach number) which does not based on the considerations whether
the flow is isentropic or adiabatic. In the same manner the definition of A∗ referred
to the theoretical minimum area (”throat area”) if the flow continues to flow in an
isentropic manner. Clearly, in a case where the flow isn’t isentropic or adiabatic the
total pressure and the total temperature will change (due to friction, and heat transfer).
A constant flow rate requires that ṁA = ṁB . Denoting subscript A for one point and
subscript B for another point mass equation (5.46) can be equated as

(
kP0A

∗

RT0

) (
1 +

k − 1
2

M2

)− k−1
2(k−1)

= constant (5.70)

From equation (5.70), it is clear that the function f(P0, T0, A
∗) = constant. There are

two possible models that can be used to simplify the calculations. The first model for
neglected heat transfer (adiabatic) flow and in which the total temperature remained
constant (Fanno flow like). The second model which there is significant heat transfer
but insignificant pressure loss (Rayleigh flow like).

If the mass flow rate is constant at any point on the tube (no mass loss occur)
then

ṁ = A∗

√
k

RT0

(
2

k + 1

) k+1
k−1

P0 (5.71)

For adiabatic flow, comparison of mass flow rate at point A and point B leads to

P0A
∗|A = P0A

∗|B

; P0|A
P0|B

=
A∗|A
A∗|B

(5.72)

And utilizing the equality of A∗ = A∗
A A leads to

P0|A
P0|B

=
A
A∗

∣∣
MA

A
A∗

∣∣
MB

A|A
A|B

(5.73)
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For a flow with a constant stagnation pressure (frictionless flow) and non adiabatic flow
reads

T0|A
T0|B

=

[
B
A∗

∣∣
MB

A
A∗

∣∣
MA

A|B
A|A

]2

(5.74)

Example 5.9:
At point A of the tube the pressure is 3[Bar], Mach number is 2.5, and the duct
section area is 0.01[m2]. Downstream at exit of tube, point B, the cross section area
is 0.015[m2] and Mach number is 1.5. Assume no mass lost and adiabatic steady state
flow, calculated the total pressure lost.

Solution

Both Mach numbers are known, thus the area ratios can be calculated. The total
pressure can be calculated because the Mach number and static pressure are known.
With these information, and utilizing equation (5.73) the stagnation pressure at point
B can be obtained.

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

1.5000 0.68966 0.39498 1.1762 0.27240 0.32039 0.55401

2.5000 0.44444 0.13169 2.6367 0.05853 0.15432 0.62693

First, the stagnation at point A is obtained from Table (5.2) as

P0|A =

P(
P
P0

)

︸ ︷︷ ︸
M=2.5

∣∣∣∣∣∣∣
A

=
3

0.058527663
= 51.25781291[Bar]

by utilizing equation (5.73) provides

P0|B = 51.25781291× 1.1761671
2.6367187

× 0.01
0.015

≈ 15.243[Bar]

Hence

P0 |A − P0|B = 51.257− 15.243 = 36.013[Bar]

Note that the large total pressure loss is much larger than the static pressure loss
(Pressure point B the pressure is 0.27240307× 15.243 = 4.146[Bar]).

End Solution

5.3 Isentropic Tables
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Table -5.2. Isentropic Table k = 1.4

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.00 1.00000 1.00000 5.8E+5 1.0000 5.8E + 5 2.4E+5

0.05 0.99950 0.99875 11.59 0.99825 11.57 4.838

0.10 0.99800 0.99502 5.822 0.99303 5.781 2.443

0.20 0.99206 0.98028 2.964 0.97250 2.882 1.268

0.30 0.98232 0.95638 2.035 0.93947 1.912 0.89699

0.40 0.96899 0.92427 1.590 0.89561 1.424 0.72632

0.50 0.95238 0.88517 1.340 0.84302 1.130 0.63535

0.60 0.93284 0.84045 1.188 0.78400 0.93155 0.58377

0.70 0.91075 0.79158 1.094 0.72093 0.78896 0.55425

0.80 0.88652 0.73999 1.038 0.65602 0.68110 0.53807

0.90 0.86059 0.68704 1.009 0.59126 0.59650 0.53039

0.95 0.00328 1.061 1.002 1.044 0.95781 1.017

0.96 0.00206 1.049 1.001 1.035 0.96633 1.013

0.97 0.00113 1.036 1.001 1.026 0.97481 1.01

0.98 0.000495 1.024 1.0 1.017 0.98325 1.007

0.99 0.000121 1.012 1.0 1.008 0.99165 1.003

1.00 0.83333 0.63394 1.000 0.52828 0.52828 0.52828

1.1 0.80515 0.58170 1.008 0.46835 0.47207 0.52989

1.2 0.77640 0.53114 1.030 0.41238 0.42493 0.53399

1.3 0.74738 0.48290 1.066 0.36091 0.38484 0.53974

1.4 0.71839 0.43742 1.115 0.31424 0.35036 0.54655

1.5 0.68966 0.39498 1.176 0.27240 0.32039 0.55401

1.6 0.66138 0.35573 1.250 0.23527 0.29414 0.56182

1.7 0.63371 0.31969 1.338 0.20259 0.27099 0.56976

1.8 0.60680 0.28682 1.439 0.17404 0.25044 0.57768
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Table -5.2. Isentropic Table k=1.4 (continue)

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

1.9 0.58072 0.25699 1.555 0.14924 0.23211 0.58549

2.0 0.55556 0.23005 1.688 0.12780 0.21567 0.59309

2.5 0.44444 0.13169 2.637 0.058528 0.15432 0.62693

3.0 0.35714 0.076226 4.235 0.027224 0.11528 0.65326

3.5 0.28986 0.045233 6.790 0.013111 0.089018 0.67320

4.0 0.23810 0.027662 10.72 0.00659 0.070595 0.68830

4.5 0.19802 0.017449 16.56 0.00346 0.057227 0.69983

5.0 0.16667 0.011340 25.00 0.00189 0.047251 0.70876

5.5 0.14184 0.00758 36.87 0.00107 0.039628 0.71578

6.0 0.12195 0.00519 53.18 0.000633 0.033682 0.72136

6.5 0.10582 0.00364 75.13 0.000385 0.028962 0.72586

7.0 0.092593 0.00261 1.0E+2 0.000242 0.025156 0.72953

7.5 0.081633 0.00190 1.4E+2 0.000155 0.022046 0.73257

8.0 0.072464 0.00141 1.9E+2 0.000102 0.019473 0.73510

8.5 0.064725 0.00107 2.5E+2 6.90E−5 0.017321 0.73723

9.0 0.058140 0.000815 3.3E+2 4.74E−5 0.015504 0.73903

9.5 0.052493 0.000631 4.2E+2 3.31E−5 0.013957 0.74058

10.0 0.047619 0.000495 5.4E+2 2.36E−5 0.012628 0.74192

(Largest tables in the world can be found in Potto Gas Tables at www.potto.org)

5.3.1 Isentropic Isothermal Flow Nozzle

General Relationship

In this section, the other extreme case model where the heat transfer to the gas is
perfect, (e.g. Eckert number is very small) is presented. Again in reality the heat transfer
is somewhere in between the two extremes. So, knowing the two limits provides a tool to
examine where the reality should be expected. The perfect gas model is again assumed
(later more complex models can be assumed and constructed in a future versions). In
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isothermal process the perfect gas model reads

P = ρR T ; dP = dρR T (5.75)

Substituting equation (5.75) into the momentum equation6 yields

U dU +
R T dP

P
= 0 (5.76)

Integration of equation (5.76) yields the Bernoulli’s equation for ideal gas in isothermal
process which reads

; U2
2 − U1

2

2
+ R T ln

P2

P1
= 0 (5.77)

Thus, the velocity at point 2 becomes

U2 =
√

2 R T ln
P2

P1
− U1

2 (5.78)

The velocity at point 2 for stagnation point, U1 ≈ 0 reads

U2 =
√

2 R T ln
P2

P1
(5.79)

Or in explicit terms of the stagnation properties the velocity is

U =
√

2 R T ln
P

P0
(5.80)

Transform from equation (5.77) to a dimensionless form becomes

; k R ¡¡µ
constant

T (M2
2 −M1

2)
2

= R ¡¡µ

constant

T ln
P2

P1
(5.81)

Simplifying equation (5.81) yields

; k (M2
2 −M1

2)
2

= ln
P2

P1
(5.82)

Or in terms of the pressure ratio equation (5.82) reads

P2

P1
= e

k (M1
2 −M2

2)
2 =

(
eM1

2

eM2
2

) k
2

Pressure Ratio

(5.83)

6The one dimensional momentum equation for steady state is UdU/dx = −dP/dx+0(other effects)
which are neglected here.
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As oppose to the adiabatic case (T0 = constant) in the isothermal flow the stagnation
temperature ratio can be expressed

T01

T02

=
¢
¢
¢̧
1

T1

T2

(
1 +

k − 1
2

M1
2

)

(
1 +

k − 1
2

M2
2

) =

(
1 +

k − 1
2

M1
2

)

(
1 +

k − 1
2

M2
2

)

T0

(5.84)

Utilizing conservation of the mass AρM = constant to yield

A1

A2
=

M2P2

M1P1
(5.85)

Combining equation (5.85) and equation (5.83) yields

A2

A1
=

M1

M2

(
eM2

2

eM1
2

) k
2

Area Ratio

(5.86)

The change in the stagnation pressure can be expressed as

P02

P01

=
P2

P1

(
1 + k−1

2 M2
2

1 + k−1
2 M1

2

) k
k−1

=

[
eM1

2

eM1
2

] k
2

Stagnation Pressure Ratio

(5.87)

The critical point, at this stage, is unknown (at what Mach number the nozzle is choked
is unknown) so there are two possibilities: the choking point or M = 1 to normalize
the equation. Here the critical point defined as the point where M = 1 so the results
can be compared to the adiabatic case and denoted by star. Again it has to emphasis
that this critical point is not really related to physical critical point but it is arbitrary
definition. The true critical point is when flow is choked and the relationship between
two will be presented.

The critical pressure ratio can be obtained from (5.83) to read

P

P ∗
=

ρ

ρ∗
=e

(1−M2) k
2

Pressure Ratio

(5.88)

Equation (5.86) is reduced to obtained the critical area ratio writes

A

A∗
=

1
M
e

(1−M2) k
2

Area Ratio

(5.89)
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Similarly the stagnation temperature reads

T0

T0
∗ =

2
(

1 +
k − 1

2
M1

2

)

k + 1

k
k−1

Stagnation Temperature Ratio

(5.90)

Finally, the critical stagnation pressure reads

P0

P0
∗ = e

(1−M2) k
2




2
(

1 +
k − 1

2
M1

2

)

k + 1




k
k−1

Stagnation Temperature Ratio

(5.91)

The maximum value of stagnation pressure ratio is obtained when M = 0 at which is

P0

P0
∗

∣∣∣∣
M=0

= e
k
2

(
2

k + 1

) k
k−1

(5.92)

For specific heat ratio of k = 1.4, this maximum value is about two. It can be noted
that the stagnation pressure is monotonically reduced during this process.

Of course in isothermal process T = T ∗. All these equations are plotted in Figure
(5.6). From the Figure 5.3 it can be observed that minimum of the curve A/A∗ isn’t
on M = 1. The minimum of the curve is when area is minimum and at the point where
the flow is choked. It should be noted that the stagnation temperature is not constant
as in the adiabatic case and the critical point is the only one constant.

The mathematical procedure to find the minimum is simply taking the derivative
and equating to zero as following

d
(

A
A∗

)

dM
=

k M2e
k (M2−1)

2 − e
k (M2−1)

2

M2
= 0 (5.93)

Equation (5.93) simplified to

k M2 − 1 = 0 ;M =
1√
k

(5.94)

It can be noticed that a similar results are obtained for adiabatic flow. The velocity at
the throat of isothermal model is smaller by a factor of

√
k. Thus, dividing the critical

adiabatic velocity by
√

k results in

Uthroatmax =
√

R T (5.95)
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Fig. -5.6. Various ratios as a function of Mach number for isothermal Nozzle

On the other hand, the pressure loss in adiabatic flow is milder as can be seen in Figure
(5.7(a)). The heat transfer compensated the pressure loss.

It should be emphasized that the stagnation pressure decrees. It is convenient to
find expression for the ratio of the initial stagnation pressure (the stagnation pressure
before entering the nozzle) to the pressure at the throat. Utilizing equation (5.88) the
following relationship can be obtained

Pthroat

P0initial

=
P ∗

P0initial

Pthroat

P ∗
=

1

e
(1−02)k

2

e

„
1−
“

1√
k

”2
«

k
2 =

e−
1
2 = 0.60653 (5.96)

Notice that the critical pressure is independent of the specific heat ratio, k, as opposed
to the adiabatic case. It also has to be emphasized that the stagnation values of the
isothermal model are not constant. Again, the heat transfer is expressed as

Q = Cp (T02 − T02) (5.97)

For comparison between the adiabatic model and the isothermal a simple profile of
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(a) Comparison between the isothermal
nozzle and adiabatic nozzle in various
variables
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(b) The comparison of the adiabatic
model and isothermal model

Fig. -5.7. The comparison of nozzle flow

nozzle area as a function of the distance is assumed. This profile isn’t an ideal profile
but rather a simple sample just to examine the difference between the two models so
in an actual situation it can be bounded. To make sense and eliminate unnecessary
details the distance from the entrance to the throat is normalized (to one (1)). In
the same fashion the distance from the throat to the exit is normalized (to one (1))
(it doesn’t mean that these distances are the same). In this comparison the entrance
area ratio and the exit area ratio are the same and equal to 20. The Mach number
was computed for the two models and plotted in Figure (5.7(b)). In this comparison it
has to be remembered that critical area for the two models are different by about 3%
(for k = 1.4). As can be observed from Figure (5.7(b)). The Mach number for the
isentropic is larger for the supersonic branch but the velocity is lower. The ratio of
the velocities can be expressed as

Us

UT
=

Ms

√
k R Ts

MT

√
k R Ts

(5.98)

It can be noticed that temperature in the isothermal model is constant while temperature
in the adiabatic model can be expressed as a function of the stagnation temperature.
The initial stagnation temperatures are almost the same and can be canceled out to
obtain

Us

UT
∼ Ms

MT

√
1 + k−1

2 Ms
2

(5.99)

By utilizing equation (5.99), the velocity ratio was obtained and is plotted in Figure
5.7(b).
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Fig. -5.8. Comparison of the pressure and temperature drop as a function of the normalized
length (two scales)

Thus, using the isentropic model results in under prediction of the actual results
for the velocity in the supersonic branch. While, the isentropic for the subsonic branch
will be over prediction. The prediction of the Mach number are similarly shown in Figure
5.7(b).

Two other ratios need to be examined: temperature and pressure. The initial
stagnation temperature is denoted as T0int. The temperature ratio of T/T0int can be
obtained via the isentropic model as

T

T0int

=
1

1 + k−1
2 M2

(5.100)

While the temperature ratio of the isothermal model is constant and equal to one (1).
The pressure ratio for the isentropic model is

P

P0int

=
1

(
1 + k−1

2 M2
) k−1

k

(5.101)

and for the isothermal process the stagnation pressure varies and has to be taken into
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account as the following:

Pz

P0int

=
P0
∗

P0int

P0z

P0
∗

isentropic︷︸︸︷
Pz

P0z

(5.102)

where z is an arbitrary point on the nozzle. Using equations (5.87) and the isentropic
relationship, the sought ratio is provided.

Figure (5.8) shows that the range between the predicted temperatures of the two
models is very large, while the range between the predicted pressure by the two models
is relatively small. The meaning of this analysis is that transferred heat affects the
temperature to a larger degree but the effect on the pressure is much less significant.

To demonstrate the relativity of the approach advocated in this book consider the
following example.

Example 5.10:
Consider a diverging–converging nozzle made out of wood (low conductive material)
with exit area equal entrance area. The throat area ratio to entrance area is 1:4 re-
spectively. The stagnation pressure is 5[Bar] and the stagnation temperature is 27◦C.
Assume that the back pressure is low enough to have supersonic flow without shock
and k = 1.4. Calculate the velocity at the exit using the adiabatic model. If the nozzle
was made from copper (a good heat conductor) a larger heat transfer occurs, should
the velocity increase or decrease? What is the maximum possible increase?

Solution

The first part of the question deals with the adiabatic model i.e. the conservation of the
stagnation properties. Thus, with known area ratio and known stagnation Potto–GDC
provides the following table:

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

0.14655 0.99572 0.98934 4.0000 0.98511 3.9405

2.9402 0.36644 0.08129 4.0000 0.02979 0.11915

With the known Mach number and temperature at the exit, the velocity can be cal-
culated. The exit temperature is 0.36644 × 300 = 109.9K. The exit velocity, then,
is

U = M
√

k R T = 2.9402
√

1.4× 287× 109.9 ∼ 617.93[m/sec]

Even for the isothermal model, the initial stagnation temperature is given as
300K. Using the area ratio in Figure (5.6) or using the Potto–GDC obtains the following
table

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

1.9910 1.4940 0.51183 4.0000 0.12556 0.50225
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The exit Mach number is known and the initial temperature to the throat temperature
ratio can be calculated as the following:

T0ini

T0
∗ =

1
1 + k−1

2
1
k

=
1

1 + k−1
k

= 0.777777778

Thus the stagnation temperature at the exit is

T0ini

T0exit

= 1.4940/0.777777778 = 1.921

The exit stagnation temperature is 1.92 × 300 = 576.2K. The exit velocity can be
determined by utilizing the following equation

Uexit = M
√

k R T = 1.9910
√

1.4× 287× 300.0 = 691.253[m/sec]

As was discussed before, the velocity in the copper nozzle will be larger than
the velocity in the wood nozzle. However, the maximum velocity cannot exceed the
691.253[m/sec]

End Solution

5.4 The Impulse Function

5.4.1 Impulse in Isentropic Adiabatic Nozzle

x-direction

Fig. -5.9. Schematic to explain the
significances of the Impulse function.

One of the functions that is used in calculating the
forces is the Impulse function. The Impulse func-
tion is denoted here as F , but in the literature some
denote this function as I. To explain the motiva-
tion for using this definition consider the calculation
of the net forces that acting on section shown in
Figure (5.9). To calculate the net forces acting in
the x–direction the momentum equation has to be
applied

Fnet = ṁ(U2 − U1) + P2A2 − P1A1 (5.103)

The net force is denoted here as Fnet. The mass conservation also can be applied to
our control volume

ṁ = ρ1A1U1 = ρ2A2U2 (5.104)

Combining equation (5.103) with equation (5.104) and by utilizing the identity in equa-
tion (5.41) results in

Fnet = kP2A2M2
2 − kP1A1M1

2 + P2A2 − P1A1 (5.105)
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Rearranging equation (5.105) and dividing it by P0A
∗ results in

Fnet

P0A∗
=

f(M2)︷ ︸︸ ︷
P2A2

P0A∗

f(M2)︷ ︸︸ ︷(
1 + kM2

2
)−

f(M1)︷ ︸︸ ︷
P1A1

P0A∗

f(M1)︷ ︸︸ ︷(
1 + kM1

2
)

(5.106)

Examining equation (5.106) shows that the right hand side is only a function
of Mach number and specific heat ratio, k. Hence, if the right hand side is only a
function of the Mach number and k than the left hand side must be function of only
the same parameters, M and k. Defining a function that depends only on the Mach
number creates the convenience for calculating the net forces acting on any device.
Thus, defining the Impulse function as

F = PA
(
1 + kM2

2
)

(5.107)

In the Impulse function when F (M = 1) is denoted as F ∗

F ∗ = P ∗A∗ (1 + k) (5.108)

The ratio of the Impulse function is defined as

F

F ∗
=

P1A1

P ∗A∗

(
1 + kM1

2
)

(1 + k)
=

1
P ∗

P0︸︷︷︸
( 2

k+1 )
k

k−1

see function (5.106)︷ ︸︸ ︷
P1A1

P0A∗
(
1 + kM1

2
) 1

(1 + k)
(5.109)

This ratio is different only in a coefficient from the ratio defined in equation (5.106)
which makes the ratio a function of k and the Mach number. Hence, the net force is

Fnet = P0A
∗(1 + k)

(
k + 1

2

) k
k−1

(
F2

F ∗
− F1

F ∗

)
(5.110)

To demonstrate the usefulness of the this function consider a simple situation of
the flow through a converging nozzle.
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Example 5.11:

ṁ=1[kg/sec]

1
2

A1=0.009[m2]

T0=400K

A2=0.003[m2]
P2=50[Bar]

Fig. -5.10. Schematic of a flow of a com-
pressible substance (gas) through a con-
verging nozzle for example (5.11)

Consider a flow of gas into a converging
nozzle with a mass flow rate of 1[kg/sec]
and the entrance area is 0.009[m2] and
the exit area is 0.003[m2]. The stagna-
tion temperature is 400K and the pres-
sure at point 2 was measured as 5[Bar].
Calculate the net force acting on the noz-
zle and pressure at point 1.

Solution

The solution is obtained by getting the data for the Mach number. To obtained the
Mach number, the ratio of P1A1/A

∗P0 is needed to be calculated. To obtain this ratio
the denominator is needed to be obtained. Utilizing Fliegner’s equation (5.50), provides
the following

A∗P0 =
ṁ
√

RT

0.058
=

1.0×√400× 287
0.058

∼ 70061.76[N ]

and
A2P2

A∗P0
=

500000× 0.003
70061.76

∼ 2.1

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.27353 0.98526 0.96355 2.2121 0.94934 2.1000 0.96666

With the area ratio of A
A? = 2.2121 the area ratio of at point 1 can be calculated.

A1

A?
=

A2

A?

A1

A2
= 2.2121× 0.009

0.003
= 5.2227

And utilizing again Potto-GDC provides

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.11164 0.99751 0.99380 5.2227 0.99132 5.1774 2.1949

The pressure at point 1 is

P1 = P2
P0

P2

P1

P0
= 5.0times0.94934/0.99380 ∼ 4.776[Bar]
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The net force is obtained by utilizing equation (5.110)

Fnet = P2A2
P0A

∗

P2A2
(1 + k)

(
k + 1

2

) k
k−1

(
F2

F ∗
− F1

F ∗

)

= 500000× 1
2.1

× 2.4× 1.23.5 × (2.1949− 0.96666) ∼ 614[kN ]

End Solution

5.4.2 The Impulse Function in Isothermal Nozzle

Previously Impulse function was developed in the isentropic adiabatic flow. The same
is done here for the isothermal nozzle flow model. As previously, the definition of the
Impulse function is reused. The ratio of the impulse function for two points on the
nozzle is

F2

F1
=

P2A2 + ρ2U2
2A2

P1A1 + ρ1U1
2A1

(5.111)

Utilizing the ideal gas model for density and some rearrangement results in

F2

F1
=

P2A2

P1A1

1 + U2
2

RT

1 + U1
2

RT

(5.112)

Since U2/R T = k M2 and the ratio of equation (5.85) transformed equation into
(5.112)

F2

F1
=

M1

M2

1 + kM2
2

1 + kM1
2 (5.113)

At the star condition (M = 1) (not the minimum point) results in

F2

F ∗
=

1
M2

1 + k M2
2

1 + k

Impulse Ratio

(5.114)

5.5 Isothermal Table

Table -5.3. Isothermal Table

M T0

T0
?

P0

P0
?

A
A?

P
P?

A×P
A∗×P0

F
F∗

0.00 0.52828 1.064 5.0E + 5 2.014 1.0E+6 4.2E+5

0.05 0.52921 1.064 9.949 2.010 20.00 8.362
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Table -5.3. Isothermal Table (continue)

M T0

T0
?

P0

P0
?

A
A?

P
P?

A×P
A∗×P0

F
F∗

0.1 0.53199 1.064 5.001 2.000 10.00 4.225

0.2 0.54322 1.064 2.553 1.958 5.000 2.200

0.3 0.56232 1.063 1.763 1.891 3.333 1.564

0.4 0.58985 1.062 1.389 1.800 2.500 1.275

0.5 0.62665 1.059 1.183 1.690 2.000 1.125

0.6 0.67383 1.055 1.065 1.565 1.667 1.044

0.7 0.73278 1.047 0.99967 1.429 1.429 1.004

0.8 0.80528 1.036 0.97156 1.287 1.250 0.98750

0.9 0.89348 1.021 0.97274 1.142 1.111 0.98796

1.0 1.000 1.000 1.000 1.000 1.000 1.000

1.1 1.128 0.97376 1.053 0.86329 0.90909 1.020

1.2 1.281 0.94147 1.134 0.73492 0.83333 1.047

1.3 1.464 0.90302 1.247 0.61693 0.76923 1.079

1.4 1.681 0.85853 1.399 0.51069 0.71429 1.114

1.5 1.939 0.80844 1.599 0.41686 0.66667 1.153

1.6 2.245 0.75344 1.863 0.33554 0.62500 1.194

1.7 2.608 0.69449 2.209 0.26634 0.58824 1.237

1.8 3.035 0.63276 2.665 0.20846 0.55556 1.281

1.9 3.540 0.56954 3.271 0.16090 0.52632 1.328

2.0 4.134 0.50618 4.083 0.12246 0.50000 1.375

2.5 9.026 0.22881 15.78 0.025349 0.40000 1.625

3.0 19.41 0.071758 90.14 0.00370 0.33333 1.889

3.5 40.29 0.015317 7.5E + 2 0.000380 0.28571 2.161

4.0 80.21 0.00221 9.1E + 3 2.75E−5 0.25000 2.438

4.5 1.5E + 2 0.000215 1.6E + 5 1.41E−6 0.22222 2.718
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Table -5.3. Isothermal Table (continue)

M T0

T0
?

P0

P0
?

A
A?

P
P?

A×P
A∗×P0

F
F∗

5.0 2.8E + 2 1.41E−5 4.0E + 6 0.0 0.20000 3.000

5.5 4.9E + 2 0.0 1.4E + 8 0.0 0.18182 3.284

6.0 8.3E + 2 0.0 7.3E + 9 0.0 0.16667 3.569

6.5 1.4E + 3 0.0 5.3E+11 0.0 0.15385 3.856

7.0 2.2E + 3 0.0 5.6E+13 0.0 0.14286 4.143

7.5 3.4E + 3 0.0 8.3E+15 0.0 0.13333 4.431

8.0 5.2E + 3 0.0 1.8E+18 0.0 0.12500 4.719

8.5 7.7E + 3 0.0 5.4E+20 0.0 0.11765 5.007

9.0 1.1E + 4 0.0 2.3E+23 0.0 0.11111 5.296

9.5 1.6E + 4 0.0 1.4E+26 0.0 0.10526 5.586

10. 2.2E + 4 0.0 1.2E+29 0.0 0.100000 5.875

5.6 The effects of Real Gases
To obtained expressions for non–ideal gas it is commonly done by reusing the ideal gas
model and introducing a new variable which is a function of the gas properties like the
critical pressure and critical temperature. Thus, a real gas equation can be expressed in
equation (4.22). Differentiating equation (4.22) and dividing by equation (4.22) yields

dP

P
=

dz

z
+

dρ

ρ
+

dT

T
(5.115)

Again, Gibb’s equation (5.26) is reused to related the entropy change to the change in
thermodynamics properties and applied on non-ideal gas. Since ds = 0 and utilizing
the equation of the state dh = dP/ρ. The enthalpy is a function of the temperature
and pressure thus, h = h(T, P ) and full differential is

dh =
(

∂h

∂T

)

P

dT +
(

∂h

∂P

)

T

dP (5.116)

The definition of pressure specific heat is Cp ≡ ∂h
∂T and second derivative is Maxwell

relation hence,
(

∂h

∂P

)

T

= v − T

(
∂s

∂T

)

P

(5.117)
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First, the differential of enthalpy is calculated for real gas equation of state as

dh = CpdT −
(

T

Z

)(
∂z

∂T

)

P

dP

ρ
(5.118)

Equations (5.26) and (4.22) are combined to form

ds

R
=

Cp

R

dT

T
− z

[
1 +

(
T

Z

)(
∂z

∂T

)

P

]
dP

P
(5.119)

The mechanical energy equation can be expressed as

∫
d

(
U2

2

)
= −

∫
dP

ρ
(5.120)

At the stagnation the definition requires that the velocity is zero. To carry the integra-
tion of the right hand side the relationship between the pressure and the density has to
be defined. The following power relationship is assumed

ρ

ρ0
=

(
P

P0

) 1
n

(5.121)

Notice, that for perfect gas the n is substituted by k. With integration of equation
(5.120) when using relationship which is defined in equation (5.121) results

U2

2
=

∫ P1

P0

dP

ρ
=

∫ P

P0

1
ρ0

(
P0

P

) 1
n

dP (5.122)

Substituting relation for stagnation density (4.22) results

U2

2
=

∫ P

P0

z0RT0

P0

(
P0

P

) 1
n

dP (5.123)

For n > 1 the integration results in

U =

√√√√z0RT0
2n

n− 1

[
1−

(
P

P0

)(n−1
n )]

(5.124)

For n = 1 the integration becomes

U =

√
2z0RT0 ln

(
P0

P

)
(5.125)

It must be noted that n is a function of the critical temperature and critical pressure.
The mass flow rate is regardless to equation of state as following

ṁ = ρ∗A∗U∗ (5.126)
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Where ρ∗ is the density at the throat (assuming the chocking condition) and A∗ is the
cross area of the throat. Thus, the mass flow rate in our properties

ṁ = A∗

ρ∗︷ ︸︸ ︷
P0

z0RT0

(
P

P0

) 1
n

U∗︷ ︸︸ ︷√√√√z0RT0
2n

n− 1

[
1−

(
P

P0

)(n−1
n )]

(5.127)

For the case of n = 1

ṁ = A∗

ρ∗︷ ︸︸ ︷
P0

z0RT0

(
P

P0

) 1
n

U∗∗︷ ︸︸ ︷√
2z0RT0 ln

(
P0

P

)
(5.128)

The Mach number can be obtained by utilizing equation (4.37) to defined the Mach
number as

M =
U√

znRT
(5.129)

Integrating equation (5.119) when ds = 0 results

∫ T2

T1

Cp

R

dT

T
=

∫ P2

P1

z

(
1 +

(
T

Z

)(
∂z

∂T

)

P

dP

P

)
(5.130)

To carryout the integration of equation (5.130) looks at Bernnolli’s equation which is

∫
dU2

2
= −

∫
dP

ρ
(5.131)

After integration of the velocity

dU2

2
= −

∫ P/P0

1

ρ0

ρ
d

(
P

P0

)
(5.132)

It was shown in Chapter (4) that (4.36) is applicable for some ranges of relative temper-
ature and pressure (relative to critical temperature and pressure and not the stagnation
conditions).

U =

√√√√z0RT0

(
2n

n− 1

) [
1−

(
P

P0

)n−1
n

]
(5.133)

When n = 1 or when n → 1

U =

√
2z0RT0 ln

(
P0

P

)
(5.134)
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The mass flow rate for the real gas ṁ = ρ∗U∗A∗

ṁ =
A∗P0√
z0RT0

√
2n

n− 1

(
P ∗

P0

) 1
n

[
1− P ∗

P0

]
(5.135)

And for n = 1

ṁ =
A∗P0√
z0RT0

√
2n

n− 1

√
2z0RT0 ln

(
P0

P

)
(5.136)

Fliegner’s number in this case is

Fn =
ṁc0

A∗P0

√
2n

n− 1

(
P ∗

P0

) 1
n

[
1− P ∗

P0

]
(5.137)

Fliegner’s number for n = 1 is

Fn =
ṁc0

A∗P0
= 2

(
P ∗

P0

)2

− ln
(

P ∗

P0

)
(5.138)

The critical ratio of the pressure is

P ∗

P0
=

(
2

n + 1

) n
n−1

(5.139)

When n = 1 or more generally when n → 1 this is a ratio approach

P ∗

P0
=
√

e (5.140)

To obtain the relationship between the temperature and pressure, equation (5.130)
can be integrated

T0

T
=

(
P0

P

) R
Cp

[z+T( ∂z
∂T )

P
]

(5.141)

The power of the pressure ratio is approaching k−1
k when z approaches 1. Note that

T0

T
=

(z0

z

)(
P0

P

) 1−n
n

(5.142)

The Mach number at every point at the nozzle can be expressed as

M =

√√√√
(

2
n− 1

)
z0

z

T0

T

[
1−

(
P − 0

P

) 1−n
n

]
(5.143)
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For n = 1 the Mach number is

M =

√
2
z0

z

T0

T
ln

P0

P
(5.144)

The pressure ratio at any point can be expressed as a function of the Mach number as

T0

T
=

[
1 +

n− 1
2

M2

](n−1
n )[z+T( ∂z

∂T )
P
]

(5.145)

for n = 1

T0

T
= eM2[z+T( ∂z

∂T )
P
] (5.146)

The critical temperature is given by

T ∗

T0
=

(
1 + n

2

)( n
1−n )[z+T( ∂z

∂T )
P
]

(5.147)

and for n = 1

T ∗

T0
=

√
e−[z+T( ∂z

∂T )
P
] (5.148)

The mass flow rate as a function of the Mach number is

ṁ =
P0n

c0
M

√(
1 +

n− 1
2

M2

) n+1
n−1

(5.149)

For the case of n = 1 the mass flow rate is

ṁ =
P0A

∗n
c0

√
eM2

√(
1 +

n− 1
2

M2

) n+1
n−1

(5.150)

Example 5.12:
A design is required that at a specific point the Mach number should be M = 2.61, the
pressure 2[Bar], and temperature 300K.

i. Calculate the area ratio between the point and the throat.

ii. Calculate the stagnation pressure and the stagnation temperature.

iii. Are the stagnation pressure and temperature at the entrance different from the
point? You can assume that k = 1.405.

Solution
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1. The solution is simplified by using Potto-GDC for M = 2.61 the results are

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

2.6100 0.42027 0.11761 2.9066 0.04943 0.14366

2. The stagnation pressure is obtained from

P0 =
P0

P
P =

2.61
0.04943

∼ 52.802[Bar]

The stagnation temperature is

T0 =
T0

T
T =

300
0.42027

∼ 713.82K

3. Of course, the stagnation pressure is constant for isentropic flow.

End Solution

5.7 Isentropic Relationships for Real Gases
Recently there was a push to utilize the real gas model. In this section a brief discussion
on this point is presented. The development of that leads to equation (5.9) has to be
modified. In this derivation it is assumed the heat capacities to be constant as well in
the ideal gas model. Hence equation (5.2) as well equation (5.5) are valid. Hence the
staring point is

1 +
U2

2 CpT
=

T0

T
(5.151)

Substituting into equation (5.151) for c2 = nZ R T (equation (4.37)) yields

T0

T
= 1 +

n Z R U2

2 Cp c2
(5.152)

By utilizing the definition of k by equation (2.24) and inserting it into equation (5.6)
yields

T0

T
= 1 +

Z n (k − 1)
2 k

U2

c2
(5.153)

Or in a dimensionless form as

T0

T
= 1 +

Z n (k − 1)
2 k

M2 (5.154)
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Since n/k is expressed by equation (4.35) resulting in

T0

T
= 1 +

Z (k − 1)
2




Z + T

(
∂Z

∂T

)

ρ

Z + T

(
∂z

∂T

)

P


 M2 (5.155)

The pressure relationship is obtained7 from equation (4.36) as

P1

P0
=

(
ρ1

ρ0

)n

(5.156)

Inserting equation (2.39) into equation (5.156) to provide

(
ρ1

ρ0

)n

=
Z1 ρ1¡R T1

Z0 ρ0¡R T0

=⇒ T0

T1
=

Z1

Z0

(
ρ0

ρ1

)1−n

(5.157)

Using the identy of ρ = P /z T R and substituting into equation (5.156) to provide

P1

P0
=




P1

Z1 T1¡R
P0

Z0 T0¡R




n

=
(

P1

P0

)n (
Z0 T0

Z1 T1

)n

T0

T1
=

Z1

Z0

(
P1

P0

)1−n
n

(5.158)

Hence the relatinshp for the static and stagantion pressure (equation (5.155)) are

P1

P0
=




Z0

Z1


1 +

Z (k − 1)
2




Z + T

(
∂Z

∂T

)

ρ

Z + T

(
∂z

∂T

)

P


 M2







n
1−n

(5.159)

7Some of corrections where suggested by Guy de Carufel



CHAPTER 6

Normal Shock

In this chapter the relationships between the two sides of normal shock are presented.
In this discussion, the flow is assumed to be in a steady state, and the thickness of
the shock is assumed to be very small. A discussion on the shock thickness will be
presented in a forthcoming section1.

flow
direction

c.v.
Px

Tx

ρx

ρyPy

Ty

Fig. -6.1. A shock wave inside a tube,
but it can also be viewed as a one–
dimensional shock wave.

A shock can occur in at least two differ-
ent mechanisms. The first is when a large differ-
ence (above a small minimum value) between the
two sides of a membrane, and when the membrane
bursts (see the discussion about the shock tube).
Of course, the shock travels from the high pressure
to the low pressure side. The second is when many
sound waves “run into” each other and accumulate
(some refer to it as “coalescing”) into a large differ-
ence, which is the shock wave. In fact, the sound
wave can be viewed as an extremely weak shock. In the speed of sound analysis, it
was assumed the medium is continuous, without any abrupt changes. This assumption
is no longer valid in the case of a shock. Here, the relationship for a perfect gas is
constructed.

In Figure 6.1 a control volume for this analysis is shown, and the gas flows from
left to right. The conditions, to the left and to the right of the shock, are assumed to
be uniform2. The conditions to the right of the shock wave are uniform, but different
from the left side. The transition in the shock is abrupt and in a very narrow width.

The chemical reactions (even condensation) are neglected, and the shock occurs

1Currently under construction.
2Clearly the change in the shock is so significant compared to the changes in medium before and

after the shock that the changes in the mediums (flow) can be considered uniform.

131
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at a very narrow section. Clearly, the isentropic transition assumption is not appropriate
in this case because the shock wave is a discontinued area. Therefore, the increase of
the entropy is fundamental to the phenomenon and the understanding of it.

It is further assumed that there is no friction or heat loss at the shock (because
the heat transfer is negligible due to the fact that it occurs on a relatively small sur-
face). It is customary in this field to denote x as the upstream condition and y as the
downstream condition.

The mass flow rate is constant from the two sides of the shock and therefore
the mass balance is reduced to

ρxUx = ρyUy (6.1)

In a shock wave, the momentum is the quantity that remains constant because
there are no external forces. Thus, it can be written that

Px − Py =
(
ρxUy

2 − ρyUx
2
)

(6.2)

The process is adiabatic, or nearly adiabatic, and therefore the energy equation can be
written as

Cp Tx +
Ux

2

2
= Cp Ty +

Uy
2

2
(6.3)

The equation of state for perfect gas reads

P = ρ R T (6.4)

If the conditions upstream are known, then there are four unknown conditions
downstream. A system of four unknowns and four equations is solvable. Nevertheless,
one can note that there are two solutions because of the quadratic of equation (6.3).
These two possible solutions refer to the direction of the flow. Physics dictates that
there is only one possible solution. One cannot deduce the direction of the flow from the
pressure on both sides of the shock wave. The only tool that brings us to the direction
of the flow is the second law of thermodynamics. This law dictates the direction of the
flow, and as it will be shown, the gas flows from a supersonic flow to a subsonic flow.
Mathematically, the second law is expressed by the entropy. For the adiabatic process,
the entropy must increase. In mathematical terms, it can be written as follows:

sy − sx > 0 (6.5)

Note that the greater–equal signs were not used. The reason is that the process is
irreversible, and therefore no equality can exist. Mathematically, the parameters are
P, T, U, and ρ, which are needed to be solved. For ideal gas, equation (6.5) is

ln
(

Ty

Tx

)
− (k − 1)

Py

Px
> 0 (6.6)
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It can also be noticed that entropy, s, can be expressed as a function of the other
parameters. Now one can view these equations as two different subsets of equations.
The first set is the energy, continuity, and state equations, and the second set is the
momentum, continuity, and state equations. The solution of every set of these equations
produces one additional degree of freedom, which will produce a range of possible
solutions. Thus, one can have a whole range of solutions. In the first case, the energy
equation is used, producing various resistance to the flow. This case is called Fanno
flow, and Chapter 10 deals extensively with this topic. The mathematical explanation
is given Chapter (10) in greater detail. Instead of solving all the equations that were
presented, one can solve only four (4) equations (including the second law), which will
require additional parameters. If the energy, continuity, and state equations are solved
for the arbitrary value of the Ty, a parabola in the T −−s diagram will be obtained. On
the other hand, when the momentum equation is solved instead of the energy equation,
the degree of freedom is now energy, i.e., the energy amount “added” to the shock.
This situation is similar to a frictionless flow with the addition of heat, and this flow is
known as Rayleigh flow. This flow is dealt with in greater detail in Chapter (11).

s

T subsonic
flow

supersonic
flow

Rayleigh
lineFanno

line

shock jump

M < 1

Ty, ,Py, sy

Tx, Px, sx

M = 1

M = 1

M =

1
√

k

M > 1

Fig. -6.2. The intersection of Fanno flow and Rayleigh flow
produces two solutions for the shock wave.

Since the shock has
no heat transfer (a special
case of Rayleigh flow) and
there isn’t essentially any
momentum transfer (a spe-
cial case of Fanno flow),
the intersection of these two
curves is what really hap-
pened in the shock. In Fig-
ure 6.2, the intersection is
shown and two solutions are
obtained. Clearly, the in-
crease of the entropy deter-
mines the direction of the
flow. The entropy increases
from point x to point y. It
is also worth noting that the
temperature at M = 1 on Rayleigh flow is larger than that on the Fanno line.

6.1 Solution of the Governing Equations

6.1.1 Informal Model

Accepting the fact that the shock is adiabatic or nearly adiabatic requires that total
energy is conserved, T0x = T0y. The relationship between the temperature and the
stagnation temperature provides the relationship of the temperature for both sides of
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the shock.

Ty

Tx
=

Ty

T0y

Tx

T0x

=
1 +

k − 1
2

Mx
2

1 +
k − 1

2
My

2
(6.7)

All the other relationships are essentially derived from this equation. The only
issue left to derive is the relationship between Mx and My. Note that the Mach number
is a function of temperature, and thus for known Mx all the other quantities can be
determined, at least, numerically. The analytical solution is discussed in the next section.

6.1.2 Formal Model

Equations (6.1), (6.2), and (6.3) can be converted into a dimensionless form. The
reason that dimensionless forms are heavily used in this book is because by doing so
it simplifies and clarifies the solution. It can also be noted that in many cases the
dimensionless equations set is more easily solved.

From the continuity equation (6.1) substituting for density, ρ, the equation of
state yields

Px

R Tx
Ux =

Py

R Ty
Uy (6.8)

Squaring equation (6.8) results in

Px
2

R2 Tx
2 Ux

2 =
Py

2

R2 Ty
2 Uy

2 (6.9)

Multiplying the two sides by the ratio of the specific heat, k, provides a way to obtain
the speed of sound definition/equation for perfect gas, c2 = k R T to be used for the
Mach number definition, as follows:

Px
2

Tx k R Tx︸ ︷︷ ︸
cx

2

Ux
2 =

Py
2

Ty k R Ty︸ ︷︷ ︸
cy

2

Uy
2 (6.10)

Note that the speed of sound on the different sides of the shock is different. Utilizing
the definition of Mach number results in

Px
2

Tx
Mx

2 =
Py

2

Ty
My

2 (6.11)

Rearranging equation (6.11) results in

Ty

Tx
=

(
Py

Px

)2 (
My

Mx

)2

(6.12)
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Energy equation (6.3) can be converted to a dimensionless form which can be expressed
as

Ty

(
1 +

k − 1
2

My
2

)
= Tx

(
1 +

k − 1
2

Mx
2

)
(6.13)

It can also be observed that equation (6.13) means that the stagnation temperature is
the same, T0y = T0x. Under the perfect gas model, ρU2 is identical to kPM2 because

ρU2 =

ρ︷︸︸︷
P

R T

M2︷ ︸︸ ︷


U2

k R T︸ ︷︷ ︸
c2


 k R T = k P M2 (6.14)

Using the identity (6.14) transforms the momentum equation (6.2) into

Px + k Px Mx
2 = Py + k Py My

2 (6.15)

Rearranging equation (6.15) yields

Py

Px
=

1 + k Mx
2

1 + k My
2 (6.16)

The pressure ratio in equation (6.16) can be interpreted as the loss of the static pressure.
The loss of the total pressure ratio can be expressed by utilizing the relationship between
the pressure and total pressure (see equation (5.11)) as

P0y

P0x

=
Py

(
1 +

k − 1
2

My
2

) k

k − 1

Px

(
1 +

k − 1
2

Mx
2

) k

k − 1

(6.17)

The relationship between Mx and My is needed to be solved from the above set of
equations. This relationship can be obtained from the combination of mass, momentum,
and energy equations. From equation (6.13) (energy) and equation (6.12) (mass) the
temperature ratio can be eliminated.

(
PyMy

PxMx

)2

=
1 +

k − 1
2

Mx
2

1 +
k − 1

2
My

2
(6.18)

Combining the results of (6.18) with equation (6.16) results in

(
1 + k Mx

2

1 + k My
2

)2

=
(

Mx

My

)2 1 +
k − 1

2
Mx

2

1 +
k − 1

2
My

2
(6.19)
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Equation (6.19) is a symmetrical equation in the sense that if My is substituted with
Mx and Mx substituted with My the equation remains the same. Thus, one solution is

My = Mx (6.20)

It can be observed that equation (6.19) is biquadratic. According to the Gauss Bi-
quadratic Reciprocity Theorem this kind of equation has a real solution in a certain
range3 which will be discussed later. The solution can be obtained by rewriting equa-
tion (6.19) as a polynomial (fourth order). It is also possible to cross–multiply equation
(6.19) and divide it by

(
Mx

2 −My
2
)

results in

1 +
k − 1

2
(
My

2 + My
2
)− k My

2 My
2 = 0 (6.21)

Equation (6.21) becomes

My
2 =

Mx
2 +

2
k − 1

2 k

k − 1
Mx

2 − 1

Shock Solution

(6.22)

The first solution (6.20) is the trivial solution in which the two sides are identical and
no shock wave occurs. Clearly, in this case, the pressure and the temperature from
both sides of the nonexistent shock are the same, i.e. Tx = Ty, Px = Py. The second
solution is where the shock wave occurs.

The pressure ratio between the two sides can now be as a function of only a
single Mach number, for example, Mx. Utilizing equation (6.16) and equation (6.22)
provides the pressure ratio as only a function of the upstream Mach number as

Py

Px
=

2 k

k + 1
Mx

2 − k − 1
k + 1

or

Py

Px
= 1 +

2 k

k + 1
(
Mx

2 − 1
)

Shock Pressure Ratio

(6.23)

The density and upstream Mach number relationship can be obtained in the
same fashion to became

ρy

ρx
=

Ux

Uy
=

(k + 1)Mx
2

2 + (k − 1)Mx
2

Shock Density Ratio

(6.24)

3Ireland, K. and Rosen, M. ”Cubic and Biquadratic Reciprocity.” Ch. 9 in A Classical Introduction
to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 108-137, 1990.
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The fact that the pressure ratio is a function of the upstream Mach number, Mx, pro-
vides additional way of obtaining an additional useful relationship. And the temperature
ratio, as a function of pressure ratio, is transformed into

Ty

Tx
=

(
Py

Px

)



k + 1
k − 1

+
Py

Px

1 +
k + 1
k − 1

Py

Px




Shock Temperature Ratio

(6.25)

In the same way, the relationship between the density ratio and pressure ratio is

ρx

ρy
=

1 +
(

k + 1
k − 1

)(
Py

Px

)

(
k + 1
k − 1

)
+

(
Py

Px

)

Shock P − ρ

(6.26)

which is associated with the shock wave.
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Fig. -6.3. The exit Mach number and the stagnation pressure ratio as a function of upstream
Mach number.
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The Maximum Conditions

The maximum speed of sound is when the highest temperature is achieved. The maxi-
mum temperature that can be achieved is the stagnation temperature

Umax =

√
2 k

k − 1
R T0 (6.27)

The stagnation speed of sound is

c0 =
√

k R T0 (6.28)

Based on this definition a new Mach number can be defined

M0 =
U

c0
(6.29)

The Star Conditions

The speed of sound at the critical condition can also be a good reference velocity. The
speed of sound at that velocity is

c∗ =
√

k R T ∗ (6.30)

In the same manner, an additional Mach number can be defined as

M∗ =
U

c∗
(6.31)

6.1.3 Prandtl’s Condition

It can be easily observed that the temperature from both sides of the shock wave is
discontinuous. Therefore, the speed of sound is different in these adjoining mediums.
It is therefore convenient to define the star Mach number that will be independent of
the specific Mach number (independent of the temperature).

M∗ =
U

c∗
=

c

c∗
U

c
=

c

c∗
M (6.32)

The jump condition across the shock must satisfy the constant energy.

c2

k − 1
+

U2

2
=

c∗2

k − 1
+

c∗2

2
=

k + 1
2 (k − 1)

c∗2 (6.33)

Dividing the mass equation by the momentum equation and combining it with the
perfect gas model yields

c1
2

k U1
+ U1 =

c2
2

k U2
+ U2 (6.34)
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Combining equation (6.33) and (6.34) results in

1
k U1

[
k + 1

2
c∗2 − k − 1

2
U1

]
+ U1 =

1
k U2

[
k + 1

2
c∗2 − k − 1

2
U2

]
+ U2 (6.35)

After rearranging and dividing equation (6.35) the following can be obtained:

U1 U2 = c∗2 (6.36)

or in a dimensionless form

M∗
1 M∗

2 = c∗2 (6.37)

6.2 Operating Equations and Analysis
In Figure 6.3, the Mach number after the shock, My, and the ratio of the total pressure,
P0y/P0x, are plotted as a function of the entrance Mach number. The working equations
were presented earlier. Note that the My has a minimum value which depends on the
specific heat ratio. It can be noticed that the density ratio (velocity ratio) also has a
finite value regardless of the upstream Mach number.

The typical situations in which these equations can be used also include the
moving shocks. The equations should be used with the Mach number (upstream or
downstream) for a given pressure ratio or density ratio (velocity ratio). This kind of
equations requires examining Table (6.2) for k = 1.4 or utilizing Potto-GDC for for value
of the specific heat ratio. Finding the Mach number for a pressure ratio of 8.30879 and
k = 1.32 and is only a few mouse clicks away from the following table.
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Fig. -6.4. The ratios of the static properties of the
two sides of the shock.

To illustrate the use of the
above equations, an example is pro-
vided.

Example 6.1:
Air flows with a Mach number of
Mx = 3, at a pressure of 0.5 [bar] and
a temperature of 0◦C goes through a
normal shock. Calculate the tempera-
ture, pressure, total pressure, and ve-
locity downstream of the shock. As-
sume that k = 1.4.

Solution

Analysis:
First, the known information are
Mx = 3, Px = 1.5[bar] and Tx =
273K. Using these data, the total
pressure can be obtained (through an isentropic relationship in Table (5.2), i.e., P0x is
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known). Also with the temperature, Tx, the velocity can readily be calculated. The
relationship that was calculated will be utilized to obtain the ratios for the downstream
of the normal shock. Px

P0x
= 0.0272237 =⇒ P0x = 1.5/0.0272237 = 55.1[bar]

cx =
√

kRTx =
√

1.4× 287× 273 = 331.2m/sec

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

3.0000 0.47519 2.6790 3.8571 10.3333 0.32834

Ux = Mx × cx = 3× 331.2 = 993.6[m/sec]
Now the velocity downstream is determined by the inverse ratio of ρy/ρx =

Ux/Uy = 3.85714.

Uy = 993.6/3.85714 = 257.6[m/sec]

P0y =
(

P0y

P0x

)
× P0x = 0.32834× 55.1[bar] = 18.09[bar]

End Solution

6.2.1 The Limitations of the Shock Wave

When the upstream Mach number becomes very large, the downstream Mach number
(see equation (6.22)) is limited by

My
2 =

1 +»»»»»:∼02
(k−1)Mx

2

2 k
k−1 −½

½½>
∼0

1
Mx

2

=
k − 1
2 k

(6.38)

This result is shown in Figure 6.3. The limits of the pressure ratio can be obtained
by looking at equation (6.16) and by utilizing the limit that was obtained in equation
(6.38).

6.2.2 Small Perturbation Solution

The small perturbation solution refers to an analytical solution where only a small change
(or several small changes) occurs. In this case, it refers to a case where only a “small
shock” occurs, which is up to Mx = 1.3. This approach had a major significance
and usefulness at a time when personal computers were not available. Now, during
the writing of this version of the book, this technique is used mostly in obtaining
analytical expressions for simplified models. This technique also has an academic value
and therefore will be described in the next version (0.5.x series).

The strength of the shock wave is defined as

P̂ =
Py − Px

Px
=

Py

Px
− 1 (6.39)
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By using equation (6.23) transforms equation (6.39) into

P̂ =
2 k

k + 1
(
Mx

2 − 1
)

(6.40)

or by utilizing equation (6.24) the following is obtained:

P̂ =

2 k

k − 1

(
ρy

ρx
− 1

)

2
k − 1

−
(

ρy

ρx
− 1

) (6.41)

6.2.3 Shock Thickness

The issue of shock thickness (which will be presented in a later version) is presented here
for completeness. This issue has a very limited practical application for most students;
however, to convince the students that indeed the assumption of very thin shock is
validated by analytical and experimental studies, the issue should be presented.

The shock thickness can be defined in several ways. The most common definition
is by passing a tangent to the velocity at the center and finding out where the theoretical
upstream and downstream conditions are meet.

6.2.4 Shock Drag or Wave Drag

ρ1

U1

stream lines

U2

ρ2

A2

P2

A1

P1

Fig. -6.5. The diagram that reexplains the
shock drag effect.

It is communally believed that regardless
to the cause of the shock, the shock cre-
ates a drag (due to increase of entropy).
In this section, the first touch of this phe-
nomenon will be presented. The fact that
it is assumed that the flow is frictionless
does not change whether or not shock
drag occur. This explanation is broken
into two sections: one for stationary shock
wave, two for moving shock shock wave.
A better explanation should appear in the
oblique shock chapter.

Consider a normal shock as shown in figure (6.5). Gas flows in a supersonic
velocity around a two–dimensional body and creates a shock. This shock is an oblique
shock, however in this discussion, if the control volume is chosen close enough to the
body is can be considered as almost a normal shock (in the oblique shock chapter a
section on this issue will be presented that explains the fact that shock is oblique, to
be irrelevant).

The control volume that is used here is along two stream lines. The other two
boundaries are arbitrary but close enough to the body. Along the stream lines there
is no mass exchange and therefore there is no momentum exchange. Moreover, it is



142 CHAPTER 6. NORMAL SHOCK

assumed that the gas is frictionless, therefore no friction occurs along any stream line.
The only change is two arbitrary surfaces since the pressure, velocity, and density are
changing. The velocity is reduced Ux > Uy. However, the density is increasing, and
in addition, the pressure is increasing. So what is the momentum net change in this
situation? To answer this question, the momentum equation must be written and it will
be similar to equation (5.103). However, since

Fy

F∗ = Fx

F∗ there is no net force acting on
the body. For example, consider upstream of Mx = 3. and for which

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

3.0000 0.47519 2.6790 3.8571 10.3333 0.32834

and the corespondent Isentropic information for the Mach numbers is

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

3.0000 0.35714 0.07623 4.2346 0.02722 0.11528 0.65326

0.47519 0.95679 0.89545 1.3904 0.85676 1.1912 0.65326

Now, after it was established, it is not a surprising result. After all, the shock
analysis started with the assumption that no momentum is change. As conclusion there
is no shock drag at stationary shock. This is not true for moving shock as it will be
discussed in section (6.3.1).

6.3 The Moving Shocks

In some situations, the shock wave is not stationary. This kind of situation arises in
many industrial applications. For example, when a valve is suddenly 4 closed and a
shock propagates upstream. On the other extreme, when a valve is suddenly opened
or a membrane is ruptured, a shock occurs and propagates downstream (the opposite
direction of the previous case). In addition to (partially) closing or (partially) opening of
value, the rigid body (not so rigid body) movement creates shocks. In some industrial
applications, a liquid (metal) is pushed in two rapid stages to a cavity through a pipe
system. This liquid (metal) is pushing gas (mostly) air, which creates two shock stages.
The moving shock is observed by daily as hearing sound wave are moving shocks.

As a general rule, the moving shock can move downstream or upstream. The
source of the shock creation, either due to the static device operation like valve operat-
ing/closing or due to moving object, is relevant to analysis but it effects the boundary
conditions. This creation difference while creates the same moving shock it creates
different questions and hence in some situations complicate the calculations. The most
general case which this section will be dealing with is the partially open or close wave.

4It will be explained using dimensional analysis what is suddenly open.
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A brief discussion on the such case (partially close/open but due the moving object)
will be presented. There are more general cases where the moving shocks are created
which include a change in the physical properties, but this book will not deal with them
at this stage. The reluctance to deal with the most general case is due to fact it is
highly specialized and complicated even beyond early graduate students level. In these
changes (of opening a valve and closing a valve on the other side) create situations in
which different shocks are moving in the tube. The general case is where two shocks
collide into one shock and moves upstream or downstream is the general case. A spe-
cific example is common in die–casting: after the first shock moves a second shock is
created in which its velocity is dictated by the upstream and downstream velocities.

U′

y
U′

x

c.v.

Px<Py ρy PyTy

Us

(a) Stationary coordinates.

(

Us−U′

y

)

(

Us−U′

x

)

c.v.

Px<Py ρy PyTy

U=0

(b) Moving coordinates.

Fig. -6.6. Comparison between stationary and moving coordinates for the moving shock.

In cases where the shock velocity can be approximated as a constant (in the
majority of cases) or as near constant, the previous analysis, equations, and the tools
developed in this chapter can be employed. The problem can be reduced to the pre-
viously studied shock, i.e., to the stationary case when the coordinates are attached
to the shock front. In such a case, the steady state is obtained in the moving control
value.

For this analysis, the coordinates move with the shock. Here, the prime ’’’ denotes
the values of the static coordinates. Note that this notation is contrary to the conven-
tional notation found in the literature. The reason for the deviation is that this choice
reduces the programing work (especially for object–oriented programing like C++). An
observer moving with the shock will notice that the pressure in the shock sides is

Px

′
= Px Py

′
= Py (6.42)

The temperatures measured by the observer are

Tx

′
= Tx Ty

′
= Ty (6.43)

Assuming that the shock is moving to the right, (refer to Figure 6.6) the velocity
measured by the observer is

Ux = Us − Ux

′
(6.44)

Where Us is the shock velocity which is moving to the right. The “downstream” velocity
is

Uy

′
= Us − Uy (6.45)
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The speed of sound on both sides of the shock depends only on the temperature and it
is assumed to be constant. The upstream prime Mach number can be defined as

Mx

′
=

Us − Ux

cx
=

Us

cx
−Mx = Msx −Mx (6.46)

It can be noted that the additional definition was introduced for the shock upstream
Mach number, Msx = Us

cx
. The downstream prime Mach number can be expressed as

My

′
=

Us − Uy

cy
=

Us

cy
−My = Msy −My (6.47)

Similar to the previous case, an additional definition was introduced for the shock
downstream Mach number, Msy. The relationship between the two new shock Mach
numbers is

Us

cx
=

cy

cx

Us

cy

Msx =
√

Ty

Tx
Msy

(6.48)

The “upstream” stagnation temperature of the fluid is

T0x = Tx

(
1 +

k − 1
2

Mx
2

)
Shock Stagnation Temperature

(6.49)

and the “upstream” prime stagnation pressure is

P0x = Px

(
1 +

k − 1
2

Mx
2

) k
k−1

(6.50)

The same can be said for the “downstream” side of the shock. The difference between
the stagnation temperature is in the moving coordinates

T0y − T0x = 0 (6.51)

It should be noted that the stagnation temperature (in the stationary coordinates)
rises as opposed to the stationary normal shock. The rise in the total temperature is
due to the fact that a new material has entered the c.v. at a very high velocity, and is
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“converted” or added into the total temperature,

T0y − T0x =Ty

(
1 +

k − 1
2

(
Msy −My

′)2
)
− Tx

(
1 +

k − 1
2

(
Msx −Mx

′)2
)

0 =

T0y
′

︷ ︸︸ ︷
Ty

(
1 +

k − 1
2

My

′2
)

+TyMsy
k − 1

2
(Msy − 2My)

−

T0x
′

︷ ︸︸ ︷
Tx

(
1 +

k − 1
2

Mx

′2
)
−TxMsx

k − 1
2

(Msx − 2Mx) (6.52)

and according to equation (6.51) leads to

T0y

′ − T0x

′
= Us

(
Tx

cx

k − 1
2

(Msx − 2Mx)− Ty

cy

k − 1
2

(Msy − 2My)
)

(6.53)

Again, this difference in the moving shock is expected because moving material velocity
(kinetic energy) is converted into internal energy. This difference can also be viewed as
a result of the unsteady state of the shock.

6.3.1 Shock or Wave Drag Result from a Moving Shock

ρ1

U1=0

stream lines

U2 6=0

ρ2

A2

P2

A1

P1

moving 
object

stationary lines at the
speed of the object

Fig. -6.7. The diagram that reexplains the
shock drag effect of a moving shock.

In section (6.2.4) it was shown that there is
no shock drag in stationary shock. However,
the shock or wave drag is very significant so
much so that at one point it was considered
the sound barrier. Consider the figure (6.7)
where the stream lines are moving with the ob-
ject speed. The other boundaries are stationary
but the velocity at right boundary is not zero.
The same arguments, as discussed before in the
stationary case, are applied. What is different
in the present case (as oppose to the stationary
shock), one side has increase the momentum
of the control volume. This increase momentum in the control volume causes the shock
drag. In way, it can be view as continuous acceleration of the gas around the body from
zero. Note this drag is only applicable to a moving shock (unsteady shock).

The moving shock is either results from a body that moves in gas or from a sudden
imposed boundary like close or open valve5. In the first case, the forces or energies flow
from body to gas and therefor there is a need for large force to accelerate the gas over
extremely short distance (shock thickness). In the second case, the gas contains the

5According to my son, the difference between these two cases is the direction of the information.
Both case there essentially bodies, however, in one the information flows from inside the field to the
boundary while the other case it is the opposite.
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energy (as high pressure, for example in the open valve case) and the energy potential
is lost in the shock process (like shock drag).

For some strange reasons, this topic has several misconceptions that even appear
in many popular and good textbooks6. Consider the following example taken from such
a book.

Fig. -6.8. The diagram for the common explanation for shock or wave drag effect a shock.
Please notice the strange notations (e.g. V and not U) and they result from a verbatim copy.

Example 6.2:
A book (see Figure 6.8) explains the shock drag is based on the following rational: The
body is moving in a stationary frictionless fluid under one–dimensional flow. The left
plane is moving with body at the same speed. The second plane is located “downstream
from the body where the gas has expanded isotropically (after the shock wave) to the
upstream static pressure”. the bottom and upper stream line close the control volume.
Since the pressure is the same on the both planes there is no unbalanced pressure forces.
However, there is a change in the momentum in the flow direction because U1 > U2.
The force is acting on the body. There several mistakes in this explanation including
the drawing. Explain what is wrong in this description (do not describe the error results
from oblique shock).

Solution

Neglecting the mistake around the contact of the stream lines with the oblique shock(see
for retouch in the oblique chapter), the control volume suggested is stretched with time.
However, the common explanation fall to notice that when the isentropic explanation
occurs the width of the area change. Thus, the simple explanation in a change only
in momentum (velocity) is not appropriate. Moreover, in an expanding control volume
this simple explanation is not appropriate. Notice that the relative velocity at the front

6Similar situation exist in the surface tension area.
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of the control volume U1 is actually zero. Hence, the claim of U1 > U2 is actually the
opposite, U1 < U2.

End Solution

6.3.2 Shock Result from a Sudden and Complete Stop

The general discussion can be simplified in the extreme case when the shock is moving
from a still medium. This situation arises in many cases in the industry, for example, in
a sudden and complete closing of a valve. The sudden closing of the valve must result
in a zero velocity of the gas. This shock is viewed and referred by some as a reflective
shock. The information propagates upstream in which the gas velocity is converted into
temperature. In many such cases the quasi steady state is established quite rapidly. In
such a case, the shock velocity “downstream” is Us. Equations (6.42) to (6.53) can be
transformed into simpler equations when Mx is zero and Us is a positive value. Figure
6.9 shows the schematic in two different coordinates for the analysis below.

U′

x

U′

y=0

My<Mx
ρy PyTy

Usρx

Px

Tx

Mx

(a) Stationary coordinates.

Us+U′

x
Py>Px

ρy PyTy
ρxPxTx

Uy=Us

(b) Moving coordinates.

Fig. -6.9. Comparison between shock results from the close valve in two stationary and moving
coordinates.

The “upstream” Mach number reads

Mx =
Us + Ux

cx
= Msx + Mx (6.54)

The “downstream” Mach number reads

My =
|Us|
cy

= Msy (6.55)

Again, the shock is moving to the left. In the moving coordinates, the observer (with
the shock) sees the flow moving from the left to the right. The flow is moving to the
right. The upstream is on the left of the shock. The stagnation temperature increases
by

T0y − T0x = Us

(
Tx

cx

k − 1
2

(Msx + 2Mx) − Ty

cy

k − 1
2

(Msy)
)

(6.56)

The prominent question in this situation is what will be the shock wave velocity

for a given fluid velocity, Ux

′
, and for a given specific heat ratio. The “upstream” or
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the “downstream” Mach number is not known even if the pressure and the temperature
downstream are given. The difficulty lies in the jump from the stationary coordinates
to the moving coordinates. It turns out that it is very useful to use the dimensionless
parameter Msx, and or Msy instead of the velocity because it combines the temperature
and the velocity into one parameter.

The relationship between the Mach number on the two sides of the shock are tied
through equations (6.54) and (6.55) by

(My)2 =

(
Mx

′
+ Msx

)2

+ 2
k−1

2 k

k − 1
(
Mx

′
+ Msx

)2 − 1
(6.57)

And substituting equation (6.57) into (6.48) results in

Mx =

f(Msx)︷ ︸︸ ︷√
Tx

Ty

√√√√
(
Mx

′
+ Msx

)2
+ 2

k−1

2k
k−1

(
Mx

′
+ Msx

)2 − 1
(6.58)

0.1 1
M

x

0

1

2

3

M
sx

M
sy

Shock in A Suddenly Close Valve
k = 1 4

Thu Aug  3 18:54:21 2006

Fig. -6.10. The moving shock Mach numbers as a result
of a sudden and complete stop.

The temperature ratio in
equation (6.58) and the rest of
the right–hand side show clearly
that Msx has four possible so-
lutions (fourth–order polynomial
Msx has four solutions). Only
one real solution is possible. The
solution to equation (6.58) can
be obtained by several numerical
methods. Note, an analytical so-
lution can be obtained for equa-
tion (6.58) but it seems utilizing
numerical methods is much more
simple. The typical method is the
“smart” guessing of Msx. For
very small values of the upstream

Mach number, Mx

′ ∼ ε equation
(6.58) provides that Msx ∼ 1+ 1

2ε
and Msy = 1− 1

2ε (the coefficient is only approximated as 0.5) as shown in Figure 6.10.
From the same figure it can also be observed that a high velocity can result in a much
larger velocity for the reflective shock. For example, a Mach number close to one (1),
which can easily be obtained in a Fanno flow, the result is about double the sonic
velocity of the reflective shock. Sometimes this phenomenon can have a tremendous
significance in industrial applications.

Note that to achieve a supersonic velocity (in stationary coordinates) a diverging–
converging nozzle is required. Here no such device is needed! Luckily and hopefully,
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engineers who are dealing with a supersonic flow when installing the nozzle and pipe
systems for gaseous mediums understand the importance of the reflective shock wave.

Two numerical methods and or algorithm employed to solve this problem for

given, Mx

′
, is provided herein:

Method 1:

(a) Guess Mx > 1,

(b) Using shock table or use Potto–GDC to calculate temperature ratio and My,

(c) Calculate the Mx = Mx

′ −
√

Tx

Ty
My

(d) Compare to the calculated Mx

′
to the given Mx

′
. and adjust the new guess

Mx > 1 accordingly.

Mehod 2:

The second method is “successive substitutions,” which has better convergence
to the solution initially in most ranges but less effective for higher accuracies.

(a) Guess Mx = 1 + Mx

′
,

(b) using the shock table or use Potto–GDC to calculate the temperature ratio and
My,

(c) calculate the Mx = Mx

′ −
√

Tx

Ty
My

(d) Compare the new Mx approach the old Mx, if not satisfactory use the new Mx

′

to calculate Mx = 1 + Mx

′
then return to part (b).

6.3.3 Moving Shock into Stationary Medium (Suddenly Open
Valve)

General Velocities Issues

When a valve or membrane is suddenly opened, a shock is created and propagates
downstream. With the exception of close proximity to the valve, the shock moves in a
constant velocity (6.11(a)). Using a coordinates system which moves with the shock
results in a stationary shock and the flow is moving to the left see Figure 6.11(b). The
“upstream” will be on the right (see Figure 6.11(b)).

Similar definitions of the right side and the left side of the shock Mach numbers
can be utilized. It has to be noted that the “upstream” and “downstream” are the
reverse from the previous case. The “upstream” Mach number is

Mx =
Us

cx
= Msx (6.59)
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(a) Stationary coordinates.
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(b) Moving coordinates.

Fig. -6.11. A shock moves into a still medium as a result of a sudden and complete opening
of a valve.

The “downstream” Mach number is

My =
Us − Uy

′

cy
= Msy −My

′
(6.60)

Note that in this case the stagnation temperature in stationary coordinates changes
(as in the previous case) whereas the thermal energy (due to pressure difference) is con-
verted into velocity. The stagnation temperature (of moving coordinates) is

T0y − T0x = Ty

(
1 +

k − 1
2

(Msy −My)2
)
− Tx

(
1 +

k − 1
2

(Mx)2
)

= 0 (6.61)

A similar rearrangement to the previous case results in

T0y

′ − T0x

′
= Ty

(
1 +

k − 1
2

(−2MsyMy + My
2
)2

)
(6.62)
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Fig. -6.12. The number of iterations to achieve convergence.

The same question that was prominent in the previous case appears now, what
will be the shock velocity for a given upstream Mach number? Again, the relationship
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between the two sides is

Msy = My

′
+

√√√√ (Msx)2 + 2
k−1

2k
k−1 (Msx)2 − 1

(6.63)

Since Msx can be represented by Msy theoretically equation (6.63) can be solved. It
is common practice to solve this equation by numerical methods. One such methods is
“successive substitutions.” This method is applied by the following algorithm:

(a) Assume that Mx = 1.0.

(b) Calculate the Mach number My by utilizing the tables or Potto–GDC.

(c) Utilizing

Mx =
√

Ty

Tx

(
My + My

′)

calculate the new “improved” Mx.

(d) Check the new and improved Mx against the old one. If it is satisfactory, stop or
return to stage (b).

To illustrate the convergence of the procedure, consider the case of My

′
= 0.3

and My

′
= 0.3. The results show that the convergence occurs very rapidly (see Figure

6.12). The larger the value of My

′
, the larger number of the iterations required to

achieve the same accuracy. Yet, for most practical purposes, sufficient results can be
achieved after 3-4 iterations for given pressure ratio.

Piston Velocity When a piston is moving, it creates a shock that moves at a speed
greater than that of the piston itself. The unknown data are the piston velocity, the
temperature, and, other conditions ahead of the shock. Therefore, no Mach number is
given but pieces of information on both sides of the shock. In this case, the calculations
for Us can be obtained from equation (6.24) that relate the shock velocities and Shock
Mach number as

Ux

Uy
=

Msx

Msx − Uy
′

cx

=
(k + 1)Msx

2

2 + (k − 1)Msx
2 (6.64)

Equation (6.64) is a quadratic equation for Msx. There are three solutions of which
the first one is Msx = 0 and this is immediately disregarded. The other two solutions
are

Msx =
(k + 1)Uy

′ ±
√[

Uy
′
(1 + k)

]2
+ 16cx

2

4 cx
(6.65)
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The negative sign provides a negative value which is disregarded, and the only solution
left is

Msx =
(k + 1)Uy

′
+

√[
Uy

′
(1 + k)

]2
+ 16cx

2

4 cx
(6.66)

or in a dimensionless form

Msx =
(k + 1)Myx

′
+

√[
Myx

′
(1 + k)

]2
+ 16

4

Piston Moving Shock

(6.67)

Where the “strange,” Mach number is Msx

′
= Uy

′
/cx. The limit of the equation when

cx →∞ leads to

Msx =
(k + 1)Myx

′

4
(6.68)

As one additional “strange” it can be seen that the shock is close to the piston when
the gas ahead of the piston is very hot. This phenomenon occurs in many industrial ap-
plications, such as the internal combustion engines and die casting. Some use equation
(6.68) to explain the (to be discussed) Shock–Choke phenomenon.

In one of the best book in fluid mechanics provides a problem that is the similar
to the piston pushing but with a twist. In this section analysis will carried for the error
in neglecting the moving shock. This problem is discussed here because at first glance
looks a simple problem, however, the physics of the problem is a bit complicated and
deserve a discussion7.

Fig. -6.13. Schematic of showing the piston
pushing air.

A piston with a known dimensions
(shown in Figure 6.13 is pushed by a
constant force. The gas (air) with an
initial temperature is pushed through a
converging nozzle (shown in the original
schematic). The point where the moving
shock reaches to the exit there are two sit-
uations:choked and unchoked flow. If the
flow is choked, then the Mach number at
the exit is one. If the flow is unchoked,
then the exit Mach number is unknown but
the pressure ratio is know. Assuming the flow is choked (see later for the calculation) the
exit Mach number is 1 and therefor, Ue =

√
k R T =

√
1.4× 287× 0.833× 293.15 ∼

313[m/sec]. The velocity at the cylinder is assumed to be isentropic and hence area
ratio is A/A∗ = 1600 the condition at the cylinder can be obtained from Potto-GDC as

7A student from France forward this problem to this author after argument with his instructor. The
instructor used the book’s manual solution and refused to accept the student improved solution which
he learned from this book/author. Therefore, this problem will be referred as the French problem.
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M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

3.614E−4 1.0 1.0 1.6E+3 1.0 1.6E+3 6.7E+2

The piston velocity is then Upiston = 0.000361425 × √
1.4× 287× 297.15 ∼

0.124[m/sec].
Before the semi state state is achieved, the piston is accelerated to the constant

velocity (or at least most constant velocity). A this stage, a shock wave is moving
away from piston toward the nozzle. If this shock reaches to exit before the semi
state is achieved, the only way to solve this problem is by a numerical method (either
characteristic methods or other numerical method) and it is out of the scope of this
chapter. The transition of the moving shock through the converging nozzle is neglected
in this discussion. However, if a quasi steady state is obtained, this discussion deals with
that case. Before the shock is reaching to exit no flow occur at the exit (as opposite
to the solution which neglects the moving shock).

The first case (choked, which is the more common, for example, syringe when
pushing air has similar situations), is determined from the fact that pressure at the
cylinder can be calculated. If the pressure ratio is equal or higher than the critical ratio
then the flow is choked. For the unchoked case, the exit Mach number is unknown.
However, the pressure ratio between the cylinder and the outside world is known. The
temperature in the cylinder has to be calculated using moving shock relationship.

In the present case, the critical force should be calculated first. The specific heat
ratio is k = 1.4 and therefore critical pressure ratio is 0.528282. The critical force is

Fcritical = PcriticalApiston = Pa
Pcritical

Pa
Apiston (6.69)

In this case

Fcritical = 101325(1/0.528282− 1)× π × 0.122

4
∼ 1022.74[N ]

Since the force is 1100 [N], it is above the critical force the flow is chocked. The
pressure ratio between the cylinder and the choking point is the critical pressure ratio.
It should be noted that further increase of the force will not change the pressure ratio
but the pressure at the choking point.

Pcylinder

Pa
=

101325 + 1100
π×0.122

4

101325
= 1.96

The moving shock conditions are determined from the velocity of the piston. As
first approximation the piston Mach number is obtained from the area ratio in isentropic

flow (3.614E−4). Using this Mach number is My

′
Potto-GDC provides

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

1.0002 0.99978 0.0 0.000361 1.0 1.001 1.0
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The improved the piston pressure ratio (“piston” pressure to the nozzle pressure)
is changed by only 0.1%. Improved accuracy can be obtained in the second iteration by
taking this shock pressure ratio into consideration. However, here, for most engineer-
ing propose this improvement is insignificant. This information provides the ability to
calculate the moving shock velocity.

Vshock = cMs = cMx = 1.0002
√

1.4× 287× 293.15 ∼ 343.3[m/sec]

The time for the moving shock to reach depends on the length of the cylinder as

t =
Lcylinder

Vshock
(6.70)

For example, in case the length is three times the diameter will result then the time is

t =
3× 0.12
343.3

∼ 0.001[sec]

Nozzle
Pressure

Piston
Velocity

Time[Msec]t0

unsteady
state

{

"initial"
pressure

pressure
after

the steady state
shock reaches
 the nozzle

 gradual
 pressure
 increase

Fig. -6.14. Time the pressure at the
nozzle for the French problem.

In most case this time is insignificant, how-
ever, there are process and conditions that this
shock affects the calculations. In Figure 6.14 shows
the pressure at the nozzle and the piston velocity.
It can be observed that piston velocity increase to
constant velocity very fast. Initially the transition
continue until a quasi steady state is obtained. This
quasi steady state continues until the shock reaches
to the nuzzle and the pressure at the nozzle jump
in a small amount (see Figure 6.14).

Shock–Choke Phenomenon

Assuming that the gas velocity is supersonic (in stationary coordinates) before the shock
moves, what is the maximum velocity that can be reached before this model fails? In
other words, is there a point where the moving shock is fast enough to reduce the
“upstream” relative Mach number below the speed of sound? This is the point where
regardless of the pressure difference is, the shock Mach number cannot be increased.

This shock–choking phenomenon is somewhat similar to the choking phenomenon
that was discussed earlier in a nozzle flow and in other pipe flow models (later chap-
ters). The difference is that the actual velocity has no limit. It must be noted that
in the previous case of suddenly and completely closing of valve results in no limit (at
least from the model point of view). To explain this phenomenon, look at the normal
shock. Consider when the “upstream” Mach approaches infinity, Mx = Msx → ∞,
and the downstream Mach number, according to equation (6.38), is approaching to
(k− 1)/2k. One can view this as the source of the shock–choking phenomenon. These
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Fig. -6.15. The maximum of “downstream” Mach number as a function of the specific heat,
k.

limits determine the maximum velocity after the shock since Umax = cyMy. From the
upstream side, the Mach number is

Mx = Msx =
¡

¡
¡¡µ
∞√

Ty

Tx

(
k − 1
2k

)
(6.71)

Thus, the Mach number is approaching infinity because of the temperature ratio but
the velocity is finite.

To understand this limit, consider that the maximum Mach number is obtained
when the pressure ratio is approaching infinity

Py

Px
→ ∞. By applying equation (6.23)

to this situation the following is obtained:

Msx =

√
k + 1
2k

(
Px

Py
− 1

)
+ 1 (6.72)

and the mass conservation leads to

Uyρy = Usρx(
Us − Uy

′)
ρy = Usρx

My

′
=

√
Ty

Tx

(
1− ρx

ρy

)
Msx (6.73)
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Substituting equations (6.26) and (6.25) into equation (6.73) results in

My

′
=

1
k

(
1− Py

Px

) √√√√
2k

k+1
Py

Px
+ k−1

k+1

×

√√√√√
1 +

(
k+1
k−1

)(
Py

Px

)
(

k+1
k−1

)
+

(
Py

Px

) (6.74)

When the pressure ratio is approaching infinity (extremely strong pressure ratio), the
results is

My

′
=

√
2

k(k − 1)
(6.75)

What happens when a gas with a Mach number larger than the maximum Mach
number possible is flowing in the tube? Obviously, the semi steady state described by
the moving shock cannot be sustained. A similar phenomenon to the choking in the
nozzle and later in an internal pipe flow is obtained. The Mach number is reduced to
the maximum value very rapidly. The reduction occurs by an increase of temperature
after the shock or a stationary shock occurs as it will be shown in chapters on internal
flow.

k Mx My My

′ Ty

Tx

1.30 1073.25 0.33968 2.2645 169842.29

1.40 985.85 0.37797 1.8898 188982.96

1.50 922.23 0.40825 1.6330 204124.86

1.60 873.09 0.43301 1.4434 216507.05

1.70 833.61 0.45374 1.2964 226871.99

1.80 801.02 0.47141 1.1785 235702.93

1.90 773.54 0.48667 1.0815 243332.79

2.00 750.00 0.50000 1.00000 250000.64

2.10 729.56 0.51177 0.93048 255883.78

2.20 711.62 0.52223 0.87039 261117.09

2.30 695.74 0.53161 0.81786 265805.36

2.40 681.56 0.54006 0.77151 270031.44

2.50 668.81 0.54772 0.73029 273861.85

Table -6.1. Table of maximum values of the shock-choking phenomenon.
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The mass flow rate when the pressure ratio is approaching infinity, ∞, is

ṁ

A
= Uy

′
ρy = My

′
cyρy = My

′

cy︷ ︸︸ ︷√
k R Ty

ρy︷ ︸︸ ︷
Py

RTy

=
My

′√
kPy√

RTy

(6.76)

Equation (6.76) and equation (6.25) can be transferred for large pressure ratios into

ṁ

A
∼

√
Ty

Px

Tx

k − 1
k + 1

(6.77)

Since the right hand side of equation (6.77) is constant, with the exception of√
Ty the mass flow rate is approaching infinity when the pressure ratio is approaching

infinity. Thus, the shock–choke phenomenon means that the Mach number is only
limited in stationary coordinates but the actual flow rate isn’t.

Moving Shock in Two and Three Dimensions

A moving shock into a still gas can occur in a cylindrical or a spherical coordinates8.
For example, explosion can be estimated as a shock moving in a three dimensional
direction in uniform way. A long line of explosive can create a cylindrical moving shock.
These shocks are similar to one dimensional shock in which a moving gas is entering
a still gas. In one dimensional shock the velocity of the shock is constant. In two
and three dimensions the pressure and shock velocity and velocity behind the shock
are function of time. These difference decrease the accuracy of the calculation because
the unsteady part is not accounted for. However, the gain is the simplicity of the
calculations. The relationships that have been developed so far for the normal shock
are can be used for this case because the shock is perpendicular to the flow. However,
it has to be remembered that for very large pressure difference the unsteadiness has
to be accounted. The deviation increases as the pressure difference decrease and the
geometry became larger. Thus, these result provides the limit for the unsteady state.
This principle can be demonstrated by looking in the following simple example.

Example 6.3:
After sometime after an explosion a spherical “bubble” is created with pressure of
20[Bar]. Assume that the atmospheric pressure is 1[Bar] and temperature of 27◦C
Estimate the higher limit of the velocity of the shock, the velocity of the gas inside
the “bubble” and the temperature inside the bubble. Assume that k = 1.4 and R =
287[j/kg/K and no chemical reactions occur.

8Dr. Attiyerah asked me to provide example for this issue. Explosion is not my area of research but
it turned to be similar to the author’s work on evacuation and filling of semi rigid chambers. It also
similar to shock tube and will be expanded later.
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Solution

The Mach number can be estimated from the pressure ratio

Pinside

Poutside
= 20

. One can obtain using Potto–gdc the following

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

4.1576 0.43095 4.2975 4.6538 20.0000 0.12155

or by using the shock dynamics section the following

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

4.1576 0.43095 0 1.575 4.298 20 0.12155

The shock velocity estimate is then

Us =

Mx︷︸︸︷
Ms cy = 4.1576×√1.4× 287× 300 ∼ 1443.47[m/sec]

The temperature inside the “bubble” is then

Ty =
Ty

Tx
Tx = 4.298× 300 ∼ 1289.4K

The velocity of the gas inside the “bubble” is then

Uy

′
= My

′
cy = 1.575×√1.4× 287× 1289.4 ∼ 1133.65[m/sec]

These velocities estimates are only the upper limits. The actual velocity will be lower
due to the unsteadiness of the situation.

End Solution

Uy = Ux

P(t)
T(t)

Toutside Poutside

r(t)

Fig. -6.16. Time the pressure at the
nozzle for the French problem.

This problem is unsteady state but can be
considered as a semi steady state. This kind of
analysis creates a larger error but gives the trends
and limits. The common problem is that for a given
pressure ratio and initial radius (volume) the shock
velocity and inside gas velocity inside are needed.
As first approximation it can be assumed material
inside the “bubble’ is uniform and undergoes isen-
tropic process. This is similar to shock tube.

The assumption of isentropic process is real-
istic, but the uniformity produce large error as the velocity must be a function of the
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radius to keep the mass conservation. However, similar functionality (see boundary layer
argument) is hopefully exist. In that case, the uniformity assumption produces smaller
error than otherwise expected. Under this assumption the volume behind the shock
has uniform pressure and temperature. This model is built under the assumption that
there is no chemical reactions. For these assumptions, the mass can be expressed (for
cylinder) as

m(t) =
P V

R T
(6.78)

It can be noticed that all the variables are function of time with the exception of gas
constant. The entering mass behind the shock is then

min =
A︷︸︸︷

2 π r L Uy ρinside (6.79)

The mass balance on the material behind the shock is

ṁ(t)−min = 0 (6.80)

Substituting equations (6.78) and (6.79) into equation (6.80) results in

d

dt

P

V︷ ︸︸ ︷
½π r2 ¶L
R T

− 2½π r¶LUxρoutside = 0 (6.81)

or after simplification as

d

dt

P r2

R T
− 2 r Ux ρoutside = 0 (6.82)

The velocity Mx is given by equation (6.72) and can be used to expressed the velocity
as

Ux = cx Mx =
√

k R Toutside

Mx︷ ︸︸ ︷√(
k + 1
2 k

) (
Poutside

P
− 1

)
+ 1 (6.83)

Substituting equation (6.83) into equation (6.82) yields

d

dt

P r2

R T
− 2 r

√
k R Toutside

√(
k + 1
2 k

)(
Poutside

P
− 1

)
+ 1 = 0 (6.84)

which is a first order differential equation. The temperature behind the shock are
affected by the conversion of the kinetic energy. The isentropic relationship for the
radius behind the shock can be expressed as

r = rini

(
P

Pini

)− 1
2 k

(6.85)
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Equations (6.84) and (6.85) can be substituted into (6.84) and denoting P̂ = P/Pini

to yield

d

dt

Pini P̂ riniP̂
− 1

k

R TiniP̂
−k−1

k

− 2 riniP̂
− 1

2 k
√

k R Toutside

√√√√√√√
(

k + 1
2 k

)



Poutside

Pini

P̂
− 1


 + 1 = 0

(6.86)

6.3.4 Partially Open Valve

The previous section described a different category of the moving shock which can be
generalized as one gas flows into another gas with a given lower velocity. The only
limitation is that the “downstream’ gas velocity must be higher than the “upstream”
gas velocity as shown in Figure 6.19.

U′

y

Usρy PyTy ρx

Px

Tx

P
iston

U′

x

(a) Stationary coordinates

Uy=Us−U′

y

Us=0U′

y>U′

x ρx

P
iston Upstream

Ux=Us−U′

x

(b) Moving coordinates

Fig. -6.17. A shock moves into a moving medium as a result of a sudden and complete open
valve.

Here, the partially open value case is discussed when two kind of information

are given. In the first case, Mx

′
and My

′
are given and rest of parameters have to

be calculated. The second case deals with more realistic situation where the actual
velocities and initial temperature is given.

Given Initial Mach Numbers

The relationship between the different Mach numbers on the “upstream” side is

Mx = Msx −Mx

′
(6.87)

The relationship between the different Mach on the “downstream” side is

My = Msy −My

′
(6.88)

An additional parameter has be supplied to solve the problem. A common problem
is to find the moving shock velocity when the velocity “downstream” or the pressure
is suddenly increased. It has to be mentioned that the temperature “downstream”
is unknown (the flow of the gas with the higher velocity). The procedure for the
calculations can be done by the following algorithm:
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(a) Assume that Mx = Mx

′
+ 1.

(b) Calculate the Mach number My by utilizing the tables or Potto–GDC.

(c) Calculate the “downstream” shock Mach number Msy = My + My

′

(d) Utilizing

Mx =
√

Ty

Tx
(Msy)−Mx

′

calculate the new “improved” Mx

(e) Check the new and improved Mx against the old one. If it is satisfactory, stop or
return to stage (b).
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Fig. -6.18. The results of the partial opening of
the valve.

Earlier, it was shown that the shock
choking phenomenon occurs when the flow
is running into a still medium. This phe-
nomenon also occurs in the case where a
faster flow is running into a slower fluid.
The mathematics is cumbersome but re-
sults show that the shock choking phe-
nomenon is still there (the Mach number
is limited, not the actual flow). Figure
6.18 exhibits some “downstream” Mach
numbers for various static Mach numbers,
My

′
, and for various static “upstream”

Mach numbers, Mx

′
. The figure demon-

strates that the maximum can also occurs in the vicinity of the previous value (see
following question/example).

Given Actual Velocities

In this case the algorithm is as the following:

1. Calculate the speed of sound upstream cx =
√

k R Tx

2. Assume that solution for Ux is between cx and (Uy

′
+ cx).

3. Calculate the Mach upstream number Mx = Ux/cx

4. For guessed Ux (or Mx), calculate the downstream Mach number in moving
coordinates My.

5. Calculate the velocity downstream the shock in moving coordinates Uy = Ux(Uy/Ux)

6. Compare the shock results from the right and left hand sides. Ux+Ux

′ ?= Uy+Uy

′

7. Repeat the calculation and start at stage 2 of this algorithm with a new guess
Ux.
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6.3.5 Partially Closed Valve

U′

x

Us
ρy

U′

y

(a) Stationary coordinates

Uy=Us+U′

xUy=Us+U′

y

Us=0 ρy

Upstream

(b) Moving coordinates

Fig. -6.19. A shock as a result of a sudden and partially a valve closing or a narrowing the
passage to the flow

The totally closed valve is a special case of a partially closed valve in which there
is a sudden change and the resistance increases in the pipe. The information propagates
upstream in the same way as before. Similar equations can be written (in the observer
coordinates):

Ux = Us + Ux

′
(6.89)

The velocity at the observer coordinates (moving coordinates) is

Uy = Us + Uy

′
(6.90)

Thus the Mach numbers are

Mx = Ms + Mx

′
(6.91)

My = Ms + My

′
(6.92)

For given static Mach numbers the procedure for the calculation is as follows:

(a) Assume that Mx = Mx

′
+ 1.

(b) . Calculate the Mach number My by utilizing the tables or Potto–GDC

(c) Calculate the “downstream” shock Mach number Msy = My −My

′

(d) Utilizing

Mx =
√

Ty

Tx
(Msy) + Mx

′

calculate the new “improved” Mx

(e) Check the new and improved Mx against the old one. If it is satisfactory, stop or
return to stage (b).
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6.3.6 Worked–out Examples for Shock Dynamics

Example 6.4:
A shock is moving at a speed of 450 [m/sec] in a stagnated gas at pressure of 1[Bar]
and temperature of 27◦C. Compute the pressure and the temperature behind the shock.
Assume the specific heat ratio is k=1.3.

Solution

It can be observed that the gas behind the shock is moving while the gas ahead of the
shock is still. Thus, it is the case of a shock moving into still medium (suddenly opened
valve case). First, the Mach velocity ahead of the shock has to calculated.

My

′
=

U√
k R T

=
450√

1.3× 287× 300
∼ 1.296

By utilizing Potto–GDC or Table (6.5) one can obtain the following table:

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

2.4179 0.50193 0.0 1.296 1.809 6.479 0.49695

The information about the iterations was obtained from Potto–GDC as

i Mx My
Ty

Tx

Py

Px
My

′

0 1.0000 1.0000 1.0000 1.0000 1.2960

1 2.2960 0.51687 1.7217 5.8288 1.2960

2 2.3788 0.50652 1.7803 6.2661 1.2960

3 2.4050 0.50342 1.7992 6.4082 1.2960

4 2.4137 0.50242 1.8055 6.4552 1.2960

5 2.4165 0.50209 1.8076 6.4708 1.2960

6 2.4175 0.50198 1.8083 6.4760 1.2960

7 2.4178 0.50194 1.8085 6.4777 1.2960

8 2.4179 0.50193 1.8086 6.4783 1.2960

9 2.4179 0.50193 1.8086 6.4785 1.2960

10 2.4179 0.50193 1.8086 6.4785 1.2960

11 2.4179 0.50193 1.8086 6.4786 1.2960

12 2.4179 0.50193 1.8086 6.4786 1.2960
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Using the above table, the temperature behind the shock is

Ty = Ty

′
=

Ty

Tx
Tx = 1.809× 300 ∼ 542.7K

In same manner, it can be done for the pressure ratio as following

Py = Py

′
=

Py

Px
Px = 6.479× 1.0 ∼ 6.479[Bar]

The velocity behind the shock wave is obtained (for confirmation)

Uy

′
= My

′
cy = 1.296×√1.3× 287× 542.7 ∼ 450

[ m

sec

]

End Solution

Example 6.5:
Gas flows in a tube with a velocity of 450[m/sec]. The static pressure at the tube
is 2Bar and the (static) temperature of 300K. The gas is brought into a complete
stop by a sudden closing a valve. Calculate the velocity and the pressure behind the
reflecting shock. The specific heat ratio can be assumed to be k = 1.4.

Solution

The first thing that needs to be done is to find the prime Mach number Mx

′
= 1.2961.

Then, the prime properties can be found. At this stage the reflecting shock velocity is
unknown.

Simply using the Potto–GDC provides for the temperature and velocity the fol-
lowing table:

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

2.0445 0.56995 1.2961 0.0 1.724 4.710 0.70009

If you insist on doing the steps yourself, find the upstream prime Mach, Mx

′
to

be 1.2961. Then using Table (6.3) you can find the proper Mx. If this detail is not
sufficient then simply utilize the iterations procedure described earlier and obtain the
following:

i Mx My
Ty

Tx
My

′

0 2.2961 0.53487 1.9432 0.0

1 2.042 0.57040 1.722 0.0

2 2.045 0.56994 1.724 0.0

3 2.044 0.56995 1.724 0.0

4 2.044 0.56995 1.724 0.0
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The above table was obtained by utilizing Potto–GDC with the iteration request.
End Solution

Example 6.6:
What should be the prime Mach number (or the combination of the velocity with the
temperature, for those who like an additional step) in order to double the temperature
when the valve is suddenly and totally closed?

Solution

The ratio can be obtained from Table (6.4). It can also be obtained from the stationary
normal shock wave table. Potto-GDC provides for this temperature ratio the following
table:

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

2.3574 0.52778 2.0000 3.1583 6.3166 0.55832

using the required Mx = 2.3574 in the moving shock table provides

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

2.3574 0.52778 0.78928 0.0 2.000 6.317 0.55830

End Solution

Example 6.7:
A gas flows in a pipe with a Mach number of 0.4. Calculate the speed of the shock
when a valve is closed in such a way that the Mach number is reduced by half. Hint,
this is the case of a partially closed valve case in which the ratio of the prime Mach
number is half (the new parameter that is added in the general case).

Solution

Refer to section (6.3.5) for the calculation procedure. Potto-GDC provides the solution
of the above data

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

1.1220 0.89509 0.40000 0.20000 1.0789 1.3020 0.99813

If the information about the iterations is needed please refer to the following table.
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i Mx My
Ty

Tx

Py

Px
My

′

0 1.4000 0.73971 1.2547 2.1200 0.20000

1 1.0045 0.99548 1.0030 1.0106 0.20000

2 1.1967 0.84424 1.1259 1.5041 0.20000

3 1.0836 0.92479 1.0545 1.2032 0.20000

4 1.1443 0.87903 1.0930 1.3609 0.20000

5 1.1099 0.90416 1.0712 1.2705 0.20000

6 1.1288 0.89009 1.0832 1.3199 0.20000

7 1.1182 0.89789 1.0765 1.2922 0.20000

8 1.1241 0.89354 1.0802 1.3075 0.20000

9 1.1208 0.89595 1.0782 1.2989 0.20000

10 1.1226 0.89461 1.0793 1.3037 0.20000

11 1.1216 0.89536 1.0787 1.3011 0.20000

12 1.1222 0.89494 1.0790 1.3025 0.20000

13 1.1219 0.89517 1.0788 1.3017 0.20000

14 1.1221 0.89504 1.0789 1.3022 0.20000

15 1.1220 0.89512 1.0789 1.3019 0.20000

16 1.1220 0.89508 1.0789 1.3020 0.20000

17 1.1220 0.89510 1.0789 1.3020 0.20000

18 1.1220 0.89509 1.0789 1.3020 0.20000

19 1.1220 0.89509 1.0789 1.3020 0.20000

20 1.1220 0.89509 1.0789 1.3020 0.20000

21 1.1220 0.89509 1.0789 1.3020 0.20000

22 1.1220 0.89509 1.0789 1.3020 0.20000

End Solution

Example 6.8:
A piston is pushing air at 10m/sec. The air temperature was found to be 27◦C. At
certain time the piston velocity jump to 20 m/sec. Calculate the shock velocity and
temperature behind the shock. Assume that k = 1.4 and R = 287 j/kg/K.
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Solution

The shock velocity is between the speed of sound (upstream speed of sound that is before
the shock) and speed of sound plus the new velocity of the piston. Utilizing the algorithm
outline in section 6.3.4. The starting point for Ux =

√
1.4× 287× 300 = 347.2 m/sec

and the other side for Ux = 347.2 + 20.

i Ux Mx My
Uy

Ux
Usx Usy

1 347.2 1.0 1.0 1.0 367.18 357.18

2 367.18 1.057 0.946 1.096 354.76 377.18

3 353.35 1.017 0.982 1.029 363.16 363.35

4 353.24 1.017 0.982 1.029 363.23 363.24

.. .. .. .. .. .. ..

10 353.24 1.017 0.982 1.029 363.22 363.24

with the final results of

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

1.0174 0.98296 0.02880 0.05695 1.0116 1.0410 0.99999

End Solution

Example 6.9:
A piston is pushing air that flows in a tube with a
Mach number of M = 0.4 and 300◦C. The piston
is accelerated very rapidly and the air adjoined the
piston obtains Mach number M = 0.8. Calculate
the velocity of the shock created by the piston in
the air. Calculate the time it takes for the shock to
reach the end of the tube of 1.0m length. Assume
that there is no friction and the Fanno flow model
is not applicable.

M′

y=0.8

Us=?

P
iston

U′

x=0.4

Fig. -6.20. Schematic of a
piston pushing air in a tube.

Solution

Using the procedure described in this section, the solution is

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

1.2380 0.81942 0.50000 0.80000 1.1519 1.6215 0.98860
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The complete iteration is provided below.

i Mx My
Ty

Tx

Py

Px
My

′

0 1.5000 0.70109 1.3202 2.4583 0.80000

1 1.2248 0.82716 1.1435 1.5834 0.80000

2 1.2400 0.81829 1.1531 1.6273 0.80000

3 1.2378 0.81958 1.1517 1.6207 0.80000

4 1.2381 0.81940 1.1519 1.6217 0.80000

5 1.2380 0.81943 1.1519 1.6215 0.80000

6 1.2380 0.81942 1.1519 1.6216 0.80000

The time it takes for the shock to reach the end of the cylinder is

t =
length

Us︸︷︷︸
cx(Mx−Mx

′
)

=
1√

1.4× 287× 300(1.2380− 0.4)
= 0.0034[sec]

End Solution

Example 6.10:
From the previous example (6.9) calculate the velocity difference between initial piston
velocity and final piston velocity.

beginlatexonly
Solution

The stationary difference between the two sides of the shock is:

∆U =Uy

′ − Ux

′
= cyUy

′ − cxUx

′

=
√

1.4× 287× 300


0.8×

q
Ty
Tx︷ ︸︸ ︷√

1.1519−0.5




∼ 124.4[m/sec]

End Solution
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Example 6.11:

1[Bar]
40 m/sec 70 m/sec

shock
waves

P
iston

P
is

to
n

300K

Fig. -6.21. Figure for Example 6.11.

An engine is designed so that two
pistons are moving toward each
other (see Figure 6.21). The air
between the pistons is at 1[Bar]
and 300K. The distance between
the two pistons is 1[m]. Calculate
the time it will take for the two
shocks to collide.

Solution

This situation is an open valve case where the prime information is given. The solution
is given by equation (6.66), and, it is the explicit analytical solution. For this case the
following table can easily be obtain from Potto–GDC for the left piston

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x
Uy

′
cx

1.0715 0.93471 0.0 0.95890 1.047 1.173 0.99959 40.0 347.

while the velocity of the right piston is

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x
Uy

′
cx

1.1283 0.89048 0.0 0.93451 1.083 1.318 0.99785 70.0 347.

The time for the shocks to collide is

t =
length

Usx1 + Usx2

=
1[m]

(1.0715 + 1.1283)347.
∼ 0.0013[sec]

End Solution

6.4 Shock Tube

The shock tube has been a study tool with very little practical purposes. It have been
used in many cases to examine certain phenomena because the high temperatures and
pressure levels can be attained. Other situations can be understood and or extended
from these phenomena by other tools. In the past most applications were related to
military purposes. Now in these days there is a large role to civilian applications from
a shock tube like configuration. Examples to such civilian application is rapid heating
(for printing) and recycling of energy. A shock tube is made of a cylinder (pipe) with
two chambers connected by a diaphragm. On one side the pressure is high, while the
pressure on the other side is low (sometime approaching vacuum). The gas from the high
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pressure section flows into the low pressure section when the diaphragm is ruptured9. A
shock is created and travels to the low pressure chamber. This phenomenon is similar
to the suddenly opened valve case described previously. At the back of the shock, the
expansion waves reduce of pressure in the driver section. The temperature is known
to reach several thousands degrees in a very brief period of time. The high pressure
chamber is referred to in the literature is the driver section and the low section is referred
to as the expansion section or the driven section.

Diaphragm
expansion
front

distance

t1

t

reflective
shock
wave

Co
nt
ac
t 
Su
rf
ac
e

f
r
o
n
t

b
a
c
k

some where
reflective wave

shock wave

12345

Fig. -6.22. The shock tube schematic with a
pressure “diagram.”

This analysis is referred to ruptured
diaphragm unless specifically referred to
moving diaphragm. Initially, the gas from
the driver section is coalescing from small
shock waves into a large shock wave. In
this analysis, it is assumed that this time is
essentially zero. Zone 1 is an undisturbed
gas and zone 2 is an area where the shock
already passed. The assumption is that
the shock is very sharp with zero width.
On the other side, the expansion waves
are moving into the high pressure cham-
ber i.e. the driver section. The shock is
moving at a supersonic speed (it depends
on the definition, i.e., what reference tem-
perature is being used and the medium be-
hind the shock is also moving but at a velocity, U3, which can be supersonic or subsonic
in stationary coordinates. The velocities in the expansion chamber vary between three
(five if the two non–moving zone are included) zones. In zone 3 refers to the original
material that was at the high pressure chamber but is now at the same pressure as zone
2. The temperature and entropy at zone 3 is different from zone 2. Zone 4 is where the
gradual transition occurs between the original high pressure to the low pressure. The
boundaries of zone 4 are defined by initial conditions. The expansion front is moving
at the local speed of sound in the high pressure section. The expansion back front is
moving at the local speed of sound velocity but the actual gas is moving in the opposite
direction in U2. In the expansion chamber, the fronts are moving to the left while the
actual flow of the gas is moving to the right (refer to Figure 6.22). In zone 5, the
velocity is zero and the pressure is in its original value.

The properties in the different zones have different relationships. The relationship
between zone 1 and zone 2 is that of a moving shock into still medium (again, this is
a case of sudden opened valve). The material in zone 2 and 3 is moving at the same
velocity (speed) but the temperature and the entropy are different, while the pressure in
the two zones are the same. The pressure, the temperature and other properties in zone
4 aren’t constant but continuous between the conditions in zone 3 to the conditions
in zone 5. The expansion front wave velocity is larger than the velocity at the back
front expansion wave velocity. Zone 4 is expanding during the initial stage (until the

9Now, a new design include the configuration of the moving diaphragm verse the ruptured is added.
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expansion reaches the wall).

The shock tube is a relatively small length 1− 2[m] and the typical velocity is in
the range of the speed of sound, c ∼ √

340 thus the whole process takes only a few
milliseconds or less. Thus, these kinds of experiments require fast recording devices (a
relatively fast camera and fast data acquisition devices.). A typical design problem of a
shock tube is finding the pressure to achieve the desired temperature or Mach number.
The relationship between the different properties was discussed earlier and because it is
a common problem, a review of the material is provided thus far.

The following equations were developed earlier and are repeated here for clarifi-
cation. The pressure ratio between the two sides of the shock is

P2

P1
=

k1 − 1
k1 + 1

(
2 k1

k1 − 1
Ms1

2 − 1
)

(6.93)

where k1 the specific heat ratio in the expansion section (if two different gases are
used). Rearranging equation (6.93) becomes

Ms1 =
√

k1 − 1
2 k1

+
k1 + 1
2 k1

P2

P1
(6.94)

Where Ms1 is the front between the boundaries of zone 1 and 2. The velocity of this
front can be expressed as

Us = Ms1c1 = c1

√
k1 − 1
2 k1

+
k1 + 1
2 k1

P2

P1
(6.95)

The mass conservation ρ1 U1 = ρ2 U2 determines the relationship between the velocity
as a function of the density ratio. The density ratio, using Rankine–Hugoniot relation-
ship (6.26), can be expressed as a function of the pressure ratio as

U1

U2
=

ρ2

ρ1
=

1 +
(

k1 + 1
k1 − 1

)
P2

P1

k1 + 1
k1 − 1

+
P2

P1

(6.96)

The velocity in zone 2 in the moving coordinates relative to the shock is

U2
′ = Us − U2 = Us

(
1− U2

Us

)
(6.97)

Notice that Us is equal to U1. From the mass conservation, it follows that

U2

Us
=

ρ1

ρ2
(6.98)
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U2

′
=

U1︷ ︸︸ ︷
c1

√
k1 − 1
2 k1

+
k1 + 1
2 k1

P2

P1




1−

U2/U1︷ ︸︸ ︷
k1 + 1
k1 − 1

+
P2

P1

1 +
(

k1 + 1
k1 − 1

)
P2

P1




(6.99)

After rearranging equation (6.99) the result is

U2

′
=

c1

k1

(
P2

P1
− 1

)
√√√√√√√

2 k1

k1 + 1
P2

P1
+

k1 − 1
1 + k1

(6.100)

On the isentropic side, in zone 4, the flow is isentropic and disturbance is moving
to the at the local speed of sound. Taking the derivative of the continuity equation,
d(ρU) = 0, and dividing by the continuity equation by U ρ the following is obtained:

dρ

ρ
= −dU

c
(6.101)

Notice that the velocity, U was replaced with the sonic velocity (isentropic disturbance).
Since the process in zone 4 is isentropic, applying the isentropic relationship (T ∝ ρk−1)
yields

c

c5
=

√
T

T5
=

(
T

T5

) 1
2

=
(

ρ

ρ5

)
0
@k5 − 1

2

1
A

(6.102)

From equation (6.101) it follows that

dU = −c
dρ

ρ
= c5

(
ρ

ρ5

)„k5−1
2

«

dρ (6.103)

Equation (6.103) can be integrated as follows:

∫ U3

U5=0

dU =
∫ ρ3

ρ5

c5

(
ρ

ρ5

)„k5−1
2

«

dρ (6.104)

The results of the integration are

U3 =
2 c5

k5 − 1


1−

(
ρ3

ρ5

)k5 − 1
2


 (6.105)
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Or in terms of the pressure ratio as

U3 =
2 c5

k5 − 1


1−

(
P3

P5

)k5−1
2 k5


 (6.106)

As it was mentioned earlier, the velocity at points 2 and 3 are identical, hence equation
(6.106) and equation (6.100) can be combined to yield

2 c5

k5 − 1


1−

(
P3

P5

)k5−1
2 k5


 =

c1

k1

(
P2

P1
− 1

)
√√√√√√√

2 k1

k1 + 1
P2

P1
+

k1 − 1
1 + k1

(6.107)

After some rearrangement, equation (6.107) is transformed into

P5

P1
=

P2

P1




1−
(k5 − 1)

(
c1

c5

)(
P2

P1
− 1

)

√
2 k1

√
2 k1 + (k1 + 1)

(
P2

P1
− 1

)




− 2 k5
k5−1

(6.108)

Or in terms of the Mach number, Ms1

P5

P1
=

k1 − 1
k1 + 1

(
2 k1Ms1

2

k1 − 1
− 1

)

1−

(
k1 − 1
k1 + 1

)
c1

c5

(
Ms1

2 − 1
)

Ms1




−
2 k5

k5 − 1

(6.109)

Using the Rankine–Hugoniot relationship (relationship across shock wave equation (6.25))
and the perfect gas model, the following is obtained:

T2

T1
=

k1 − 1
k1 + 1

+
(

P2

P1

)

1 +
k1 − 1
k1 + 1

(
P2

P1

) (6.110)

By utilizing the isentropic relationship for zone 3 to 5 (and P2 = P3) results in

T3

T5
=

(
P3

P5

)k5−1
k5

=
(

P2

P1

/
P5

P1

)k5 − 1
k5 (6.111)

Solution of equation (6.109) requires that

0 < 1−

(
k1 − 1
k1 + 1

)
c1

c5

(
Ms1

2 − 1
)

Ms1
(6.112)
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Thus the upper limit of Ms1 is determine by equation (6.112) to be

(
k1 − 1
k1 + 1

)
c1

c5

(
Ms1

2 − 1
)

> Ms1 (6.113)

The two solutions for the upper limit for Ms1 are

Ms1 = −

√(
k1

2 + 2 k1 + 1
)

k5 R5 T5 +
(
4 k1

3 − 8 k1
2 + 4 k1

)
R1 T1

k5 R5 T5
− k1 − 1

(2 k1 − 2)
√

k1

k5

√
R1

R5

√
T1

T5

(6.114)

and

Ms1 = −

√(
k1

2 + 2 k1 + 1
)

k5 R5 T5 +
(
4 k1

3 − 8 k1
2 + 4 k1

)
R1 T1

k5 R5 T5
+ k1 + 1

(2 k1 − 2)
√

k1

k5

√
R1

R5

√
T1

T5

(6.115)

Ms1

k
1

k2

M
s
1

Fig. -6.23. Maximum Mach number that can
be obtained for given specific heats.

The first limit equation (6.114) represents
the after shock. While the second equa-
tion (6.115) represents the actual shock
that occurs. The speed of sound on both
sides affects the maximum Mach numbers.
The typical value for air–air (under the
assumption of constant air properties) is
around 6. The lower limit of this maxi-
mum is around 2 for gas with lower spe-
cific heat. For a wide range this value can
be assume to be between 4 to 8. For the
case where the R and temperature value
is plotted in Figure 6.23. When the tem-
perature and the same gases are used (or
the gases have the same R and the same
k) the following is true

Ms1 =

√
5 k1

2 − 6 k1 + 5 + k1 + 1
2 k1 − 2

(6.116)

The physical significant is that when specific heat is approaching one (1) the material
is more rigid and hence the information pass faster.
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Example 6.12:
A shock tube with an initial pressure ratio of P5

P1
= 20 and an initial temperature

of 300K. Assume that specific heat for both gases is equal to 1.4. Calculate the
shock velocity and temperature behind the shock. If the pressure ratio is increased to
P5
P1

= 40 and the initial temperatures remain the same, would the temperature at point
3 (see Figure 6.22) increase or decrease? What is the reason for the change of the
temperature? Assume that R = 287 j/kg/K

Solution

With the given pressure ratio of P5
P1

= 20, equation (6.109) can be solved by iterations
or any other numerical methods. The solution of the equation yields that Ms1 = 1.827.
This can be obtained using the half method where the solution start with limits of 1.+ε
to the limit shown in equation (6.116) see table below.

Iteration Ms1
P5

P1
Iteration Ms1

P5

P1

1 1.0000001 1.0000047 2 5.8333 21914856802.0

3 3.416667 2313.79 4 2.208 62.293

5 1.604167 9.89 6 1.91 25.44

7 1.755 16.0 22 1.827 ∼20.00

The

Pressure ratio after shock can be calculated using (6.93) to obtain P2/ P1 = 3.729 or
using the standard shock table for shock Table 6.2.

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

1.8270 0.61058 1.5519 2.4020 3.7276 0.80062

The conditions at point 3 can be obtained using equation (6.111) as

T3 = T5
T3

T5
=

(
P2

P1

/
P5

P1

)k5−1
k5

= 300×
(

3.7276
20

) 0.4
1.4

= 185.6◦C (6.XII.a)

And the speed of sound at this point is

c3 =
√

k5 R T3 =
√

1.4× 287× 185.6 ∼ 273.1
[ m

sec

]
(6.XII.b)

All these calculations can be done in one step using Potto-GDC as

P5

P1
Ms1

P2

P1

T2

T1

P5

P3

T5

T3
Us5

20.0000 1.8273 3.7287 1.5521 5.3637 1.6159 273.12
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For the same condition with pressure ratio of P5/ P1 = 40 results in

P5

P1
Ms1

P2

P1

T2

T1

P5

P3

T5

T3
Us5

40.0000 2.0576 4.7726 1.7348 8.3812 1.8357 256.25

As indicated from this table, the temperature in zone 3 became more cold in comparison
with the pressure. It also can be observed that the shock Mach number is larger.

End Solution

As demonstrated by Example (6.12) the shock Mach number is much smaller than
the actual small upper limit. This can be plotted as a function of the given pressure
ratio and for various specific heat ratios. This plot is presented in Figure 6.24 for three
combination of the specific heats.

35

30

4

8

725

M
s
1

P5

P1

Ms1

k1 k5

k1 k5

k1 k5

k1 k5

Fig. -6.24. The Mach number obtained for various parameters.

The Figure 6.24 shows that the maximum Mach is larger and lower for the mixed
value of k as compared to when k1 and k5 are equal. When the pressure ratio, P5/P1

reaches to value larger than 50 the Mach number can be treat as constant for the
specific combination.

Example 6.13:
A shock tube with the conditions given in Example 6.12 has a length of 4 meter and
diaphragm exactly in the middle. Calculate the time it takes to the shock reach half
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way to the end (1 meter from the end). Plot the pressure and temperature as a function
of location for initial pressure ratio of 20, 40, 100, 500.

Solution

The Mach number can be found in the method described in Example 6.12 and present
in the following table10.

P5

P1
Ms1

P2

P1

T2

T1

P5

P3

T5

T3
Us5

20.00 1.8273 3.7287 1.5521 5.3638 1.6159 273.12

40.00 2.0576 4.7726 1.7348 8.3813 1.8357 256.25

100.00 2.3711 6.3922 2.0129 15.6440 2.1940 234.39

500.00 2.9215 9.7909 2.5878 51.0681 3.0764 197.94

The time can be obtained by

t =
L

Us1
=

0.5
c1 Ms1

=
0.5√

k1 R1 T1 Ms1

=
.5√

1.4× 287× 300 Ms1
(6.XIII.a)

Where Ms1 is given by the table above. For example for first case of
P5

P1
= 20

t =
0.5√

1.4× 287× 300× 1.8273
∼ 0.00079 [sec] (6.XIII.b)

The location of points 3 and point 4 are obtained by using the time obtained in in
previous calculations times the local sound velocity. The velocity at boundary between
zone 3 to zone 4 is

U3 =
√

k5 R T3 =

√√√√√
k5 R T5

T5

T3

=

√
1.4× 287× 300

1.6159
= 273.1

[ m

sec

]
(6.XIII.c)

Thus the distance is

`3 = c3 t = 273.1× 0.00157 = 0.43[m] from the shock tube center (6.XIII.d)

The location of border between zone 2 to 3 can be obtained using the same velocity
(but to different direction) as

`2 = c2 t = c3 t = 0.43[m] (6.XIII.e)

10This table was generated using Potto GDC. The new version was not released yet since the interface
is under construction.
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where the velocity of point 4 (between zone 4 and 5) is

U4 =
√

k5 R T5 =
√

1.4× 287× 300 ∼ 347.2
[ m

sec

]
(6.XIII.f)

The distance of point 4 is

`4 = c3 t = 347.2× 0.00157 = 0.545[m] (6.XIII.g)

dx

zone
5

zone
3

zone
2

x

cx+dx
cx

Fig. -6.25. Differential element to describe the
isentropic pressure.

With the above information, the fig-
ure can be plotted with the exception of
the zone 4, where the relation as a func-
tion of x have to be developed. Figure
6.25 schematic of the shock tube where
blue is the region of the undisturbed gas
and the purple color is the region where
the gas went complete isentropic reduction
and it is in its lowest temperature. The el-
ement shown in the Figure 6.25 is moving with velocity cx. One moving with the
element observed that the material is entering the differential element at the velocity
cx. Thus, mass conservation on the moving element reads

ρ A
dx

dt
= ρU A = ρ cx A (6.XIII.h)

or

dx

dt
= cx =

√
k R Tx =

√
k R T5

√
Tx

T5
=

√
k R T5

(
Px

P5

)k5 − 1
2 k5 (6.XIII.i)

equation (6.XIII.i) is a linear first order differential equation. It can be noticed the Px

is fix however the x is the variable and thus the solution is

x =
√

k R T5

(
Px

P5

)k5 − 1
2 k5 t + C

(6.XIII.j)

At t = 0 the distance is zero. Thus the constant is zero and the solution is

x =
√

k R T5

(
Px

P5

)k5 − 1
2 k5 t

(6.XIII.k)

This equation is applicable for the edge state which were already used. This equation
simply states that velocity is relative to the pressure. This result is similar to method
of characteristic which will be discussed later. For example, for the pressure ratio of
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0.5
P5/P3

is

cx =
√

k R T5

( 0.5 P5
P3︷ ︸︸ ︷

2.6819

)1− k5

2 k5
t

=
√

1.4× 287× 300× 2.6819
1−1.4
2.8 × 0.00157 = 301.6× 0.00157

∼ 0.47[m]

(6.XIII.l)

The same can be done for every point of the pressure range of Px/P5 = 1 to Px/P5 =
1/5.3638 = 0.186 or the temperature range.

End Solution

6.4.1 Special Shock Dynamics

U′

x

Us

ρy

U′

y

Up

L

Upstreamξ

Fig. -6.26. Porous piston pushing gas and there
is shock similar to open valve case.

In the previous Section 6.3 various stan-
dard cases of shock dynamics were pre-
sented. In this section, a discussion on
irregular cases is presented. The par-
tial open and partial close valve are the
most general cases. However, the question
or the given information can be different
which depends on the physical conditions.
For example, in the “classic” partial open
valve the velocity or the Mach number is
specified. In other cases, the flow rate is specified as a boundary condition. The solution
process is more complicate in the class cases. Consider a porous piston or leaking piston
pushing gas. In that case the piston velocity as boundary condition can be specified
but rather the flow rate. To make this point clear consider the following situation. A
flow is pushed by a piston made from a porous material as shown in Figure 6.26. As
to previous cases, the condition(s) that can be specified on the flow at the piston head.
The flow rate (through the piston) at the piston head is a function of the pressure at
that point. Another point the pressure downstream from the shock is not uniform. The
solution of problem requires Specify the boundary condition.

In this section, a limited discussion on the governing equations and boundary
conditions is presented. The typical control volume in these case is made from the shock
front and piston head (shown in the Figure 6.26 by the green box). The coordinates are
either attached to the shock front or to piston head. The control volume is expanding
with time. The velocity of the shock is denoted as Us. While the velocity through
the porous piston is not uniform, however,it is considered to be uniform for simplicity
reasons. Using Darcy’s law (in coordinates fixed to the piston under assumption of the
constant piston velocity) for the piston reads

Uout = Kp (Pp − Pout) (6.117)
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where Kp represents the characteristic resistance and geometry of the piston. where p
denotes the conditions at the piston head or in other words just before the gas flows into
the piston. The boundary conditions at the shock interface are identical to stationary
shock in coordinates moving with the shock. For the solution it is assumed that shock
conditions are at steady state. Later these conditions can be improved. The mass
conservation of the control volume is

dm

dt
= min −mout (6.118)

The relationship between the velocities in the moving coordinates and the stationary
coordinates are expressed as

Uy

′
= Us − Uy or/and Uy = Us − Uy

′
or/and Up = Us − Up

′
(6.119)

Where p denotes the conditions at the piston head or in other words just before the
gas flows into the piston, and y denotes the downstream shock conditions. Note that

Uy

′
is measured to right as positive. In this case, the density in both coordinates is the

same, ρy = ρ′y.
The density after the downstream shock, ρy can be calculated based on the

density on the other side (upstream) of the shock equation (6.24). It can be noticed
that velocity in the control volume, Ux = Us, is the shock velocity. The flow rate in
the control volume (written in the moving coordinates) is

min = ρy




Uy︷ ︸︸ ︷
Us − Uy

′


 A (6.120)

The flow rate out (at the piston) can be expressed as

mout = ρp Uout A (6.121)

The relationship between the density and pressure in side the control volume can be
considered isentropic hence the relationship can be expressed as

ρp

ρy
=

(
Pp

Py

) 1
k

(6.122)

Using the relationship for normal shock

ρx

ρy
=

1 +
(

k + 1
k − 1

) (
Py

Px

)

(
k + 1
k − 1

)
+

(
Py

Px

) (6.123)

When the x denotes the condition upstream of the shock which consider known.
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The shock Mach number can be calculated utilizing several relationships. First,
the pressure ratio Pr/Px determines the Mach number as

Ms = Mx =

√
k1 − 1
2 k1

+
k1 + 1
2 k1

Px

Py
(6.124)

The mach number after shock can be calculated using the normal shock relationship as

My
2 =

Mx
2 +

2
k − 1

2 k

k − 1
Mx

2 − 1
(6.125)

The velocity can be calculated using the Mach number definition

Uy = My

√
k R Ty (6.126)

The mass in the control volume (in the piston moving coordinate) is

mcv = A

∫ L(t)

0

ρ(ξ)dξ (6.127)

The isentropic relationship ties the pressure at the downstream the shock, y (ρ(ξ) =
ρy(P (ξ)/Py)1/k. The density profile is

ρ(ξ) =
ρy

Py
1/k

fp

(
ξ

L

)
(6.128)

Hence,

mcv =
Aρy L

Py
1/k

∫ L(t)
L

0

fp




η︷︸︸︷
ξ

L




dη︷︸︸︷
dξ

L
(6.129)

Where fp is the function describing the distribution of the density.
Thus the derivative with respect to time of the mass in the control volume is

dmcv

dt
=

d

dt

(
A ρr L

Pr
1/k

∫ 1

0

fp (η) dη

)
(6.130)

Since L(t) is a function of time but the integral is not function of the time anymore. it
can be written that

dmcv

dt
=

A ρr

Pr
1/k

∫ 1

0

fp (η) dη

Us︷︸︸︷
dL

dt
(6.131)
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The temperature, Ty (refer to Figure 6.1), can be found from the shock relation-
ship as

Ty = Tx

(
Py

Px

)



k + 1
k − 1

+
Py

Px

1 +
k + 1
k − 1

Py

Px


 (6.132)

The density at the piston area, ρp, is a function of the shock Mach number.
In this set of equations there are 7 unknowns and 7 equations which can be solved.

The discussion for the numerical method of solution is not presented here at this stage.

6.4.2 Shock Tube Thermodynamics Considerations

VA

Piston

ρA

PA

mA

TA

LA

VB

ρB

PB

mB

TB

LB

Driver Expansion

Fig. -6.27. Shock tube schematic for thermo-
dynamics consideration at initial stage.

The shock tube applications experiencing
transition from mostly military to civilian
utilization. The civilian utilization of the
shock tube requires economizing the shock
tube design. As appose to construction for
military usage, the civilian applications re-
quire reduction of the cost. In industrial
applications the cost of operation and effi-
ciency plays an important role. One of the
civilian application is that the shock tube
possibly can be used for very rapid heat-
ing. An example of civilian application is
the printing industry where a rapid heating
is required. After spraying the ink, the ink has to be rapidly heated and cooled to be
used by the final user. Today, this “baking” process is obtained by laser light which
consumes large amount of energy and required additional energy for the cooling. Shock
tubes also can be used to absorb energy to create high temperature difference which
later can be used “recycle” the energy with a larger efficiency (according to Carnot
cycle).

Examination of the maximum temperature potential of devices of a shock–tube–
like–configuration leads to a new design requirement on the diaphragm. This require-
ment of the shock tube dictates that the diaphragm should be moving as a novel
concept. The basic understanding of the process can be gained by looking at the un-
derline thermodynamical principles which control the process. In Chapter 2 (page 33)
the concept of the pressure potential was introduced. Here, this pressure potential
concept will be extended.

In the previous case (see Section 2.1.1), the compressed chambered was working
against vacuum. The general case refers to the case where the one chamber work or
potential is done on the adjoin chamber. Figure 6.27 exhibits two chambers separated
by a moving diaphragm (denoted as a piston in the Figure 6.27). The left chamber
contains high pressure gas while the pressure on the right chamber is very low. The
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maximum work is obtained when the driver chamber undergoes adiabatic isentropic ex-
pansion. In the same vain of argument, the expansion chamber has to undergo adiabatic
compression however, the process does not have to be isentropic. The temperature (or
the internal energy) in the driven chamber will be a function of the energy or work
transferred into regardless the thermodynamical path.

At the end point of the process, after the piston (moving diaphragm) is allowed
to move, an pressure equilibrium is obtained. This equilibrium means that the pressures
at the two chambers is identical but the temperature is different. The equilibrium point
depends on the several parameters. In the book “Basics of Fluid Mechanics” presents a
discussion about the dimensional analysis of this topic (also see a youtube video by this
author on this topic). The internal and external engines are constructed by utilizing the
temperature difference (i.e. the internal combustion engine.)11. The shock tube is a
device operates in the opposite direction where the pressure difference is used to increase
the temperature difference. The reverse order was never analyzed thermodynamically
and systematically until now. There are thermodynamical paths on which the pressure
difference can yield a minimal temperature increase, if any. For example, two chambers
with a large pressure difference can be connected via a large resistance pipe. The fluid
from the high pressure chamber flows slowly to the second chamber resulting in a very
minimal temperature change. The temperature does not necessarily increase. If the
fluid is liquid, then a considerable temperature reduction is observed in both chambers
(see the common refrigeration cycle).

The standard construction of ruptured diaphragm leads to analysis of maximum
temperature in the past12. Perhaps the most famous of Zel’Dovich13 ideas which can
be summarized by the concept of large energy (large specific heat on the driver side)
and low heat capacity in the expansion section. This analysis were based on the shock
dynamics (i.e. successive shocks or sock in a vacuum). In this book it was shown
that, regardless pressure ratio, the shock strength has a maximum in the shock tube
configuration.

The standard analysis for the first shock’s strength and velocity is done by using
the one-dimensional approach. It can be understood that the mixingless situation will
increase the maximum temperature. This analysis does not check what is the limit
in the current configuration. This analysis evaluates the maximum temperature by
looking at the potential (pressure and internal) energy and evades the successive shock
waves analysis. In other words, this shock analysis is not addressed and is bypassed.
Furthermore, the current analysis will also check, regardless to the configuration, what
is the maximum temperature. Thus, conceivably this analysis could lead to a different
configuration of an improved shock tube with a higher efficiency.

The introduction of the notion of the maximum temperature suggests the concept
of the shock tube efficiency. This author is not familiar with any definition of the
shock tube efficiency in the literature. There are several potential definitions which can

11Even the the absorption refrigerator cycle is using the temperature difference for cooling.
12This point is presented in this version because it so novel that most researchers in the area not

familiar with these points and concepts. It is will be removed when the information will spread around.
13These proposed by Zel’Dovich’s proposals were repeated by several other researchers.
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be employed. The simplest definition can be referred to as the impossible maximum
efficiency. This definition refers to the ratio of the actual temperature to the temperature
if all the available potential pressure energy in the driver section was transferred to the
expansion section. For a model without reactions, it can be written as

ηimaginary =
∆Euexpansion

(PA1 − PB1)ALB1
(6.133)

In writing equation (6.133) it is realized that the potential energy is the work done by
the driver section from the initial condition (see Fig. 6.27) to the final pressure on the
expansion section moving along the entire expansion section. The advantage of this
definition is its simplicity; there is no need to find the final equilibrium pressure or the
equilibrium location. The disadvantage of this method is that it does not provide a
thermodynamical path on which the maximum temperature can be obtained.

To remedy the last problem, another definition, based on the driver section expan-
sion to the point where driver section and the driven section are brought into equilibrium,
is proposed as

ηreal =
∆Euexpansion∫ e

A1

AP dx

(6.134)

The final pressure is unknown and depends on the path this equilibrium is achieved.
The gas expansion process in the driver section can move on an arbitrary path such
as isothermal or isentropic. The final pressure and temperature are a function of the
path process. The second law of thermodynamics prescribes that the maximum work
which can be extracted during the process (in driver section) must be isentropic14. The
isentropic path reduces the driver temperature to a minimum thus a maximum energy
extraction is achieved. The temperature increase of the expansion (driver) section is
achieved by the compression done by the driver section when the internal energy and
the pressure potential provide the energy. The isentropic process is achieved when the
flow is very slow15 and hence the equilibrium will be achieved without oscillations. The
work is transformed and the expansion section increases the gas internal energy. Note
that the exchange or transfer of work between the two sides causes the reduction of the
driver section temperature. The maximum temperature that will be obtained when all
the compression potential is converted to internal energy and the velocity is zero in the
system. That is, the pressure at the two sides is equal with no further movement of the
gas.

14The point of this excesses is to extract maximum work. Then the heat addition (either from
reactions or transferred) will increase the potential work. This point is not discussed in this work and
could be extended see example later.

15The actual process in the driver section is very fast. Yet, in the initial part when the first shock
and the reflecting wave take place, the sound waves in the driver section are assumed to be isentropic
(as sound wave assumed to be shock with zero amplitude and hence assumed to be isentropic). This
assumption is very common to any shock tube analysis tube regardless of the fact that sound wave
are quite fast. The statement is directed to the stage after these initial shocks to the point when the
interface moves slowly to the equilibrium. This discussion does not address how to achieve this process
technically.
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Fig. -6.28. The final or equilibrium stage in the
shock tube.

The starting point of the process,
the driver chamber is with high uniform
pressure while the driven section is at low
pressure. At the end point, shown in Fig-
ure 6.28, the pressure driver section is at
equilibrium with the pressure of the deriven
section. The chamber on the left (driver
section) is denoted A and the right (driven
section) is denoted as B. The tempera-
ture, pressure, and volume are denoted as
1 for the initial state and e or 216 for the
final state. The gas expands from the left
(high pressure) to the right (low pressure).
At the final stage, the gas remains at equilibrium and does not mix (moving diaphragm
case). The mixing process takes time and the characteristic time is larger. Further, in
most cases, the mixing process reduces the maximum temperature. While there might
be some gases combinations which increase the maximum temperature, these cases are
not investigated in this analysis. Hence, the mixing process element is neglected.

The final gas pressure can be obtained because the path is known (adiabatic
isentropic process). Utilizing the ideal gas model, the mass at both chamber remains
constant and equal to

mji =
Pji Vji

Rj Tji
(6.135)

Where i indicates the state (initial, final, intermediate, equilibrium) and j indicates if
it is in A or B. The density, ρ, as a function of the distance, x, can be expressed as

ρj(x) =
Pj1 Lj1

Rj Tj1 (Lj1 ± x)
(6.136)

Where the ± sign is plus for the driver and minus for the expansion section. Notice
that in equation (6.136), the volumes were substituted by the lengths since the cross
section is uniform.

Utilizing the ideal gas model for the relationship between the initial condition and
any intermediate point on the path, the following can be written as

Pj(x) = Pj1
Tj(x)Lj1

Tj1 (Lj1 ± x)
(6.137)

Using the isentropic relationship for the internal process for the driver section, the
following can be written

PA(x) = PA1

(
LA1

LA1 + x

)k

(6.138)

16In this case, the notation or the states of e and 2 are identical. In other situations, the equilibrium
and the final states are different.
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Introducing a dimensionless variable

ξ =
x

LA + LB
=

x

L
(6.139)

where L = LA + LB and which implicitly indicates that with the notation used herein
as ξA = LA1/L, ξB = LB1/L, and ξe = Le/L.

The work done by the driver section is

WA1−→e

A
=

∫ Le

0

PA1

(
LA1

(LA1 + x)

)kA

dx (6.140)

Equation (6.140) can be transformed into a dimensionless form as

WA

AL PA1
=

∫ ξe

0

(
ξA

ξA + ξ

)kA

dξ (6.141)

Carrying the integration of equation (6.141) yields

WA

AL PA1
=

ξA (ξA + ξe)
k − (ξA + ξe) ξA

k

(k − 1) (ξA + ξe)
k

def≡ f (ξe) (6.142)

In the case where the ideal gas model cannot be used, the left hand side has to be
replaced with the integral representing the internal energy change. When the specific
heat, Cv, is significantly varied with the temperature in the range the common value
has to be replaced with the averaged specific heat, Cv.
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Fig. -6.29. Dimensionless work as a function of dimensionless length of the expansion for the
shock tube.

The work is done by the driver section as a function of ξe and is depicted in
Figure 6.29. It must be alluded that the work value can be approximated as a simple,
ξe almost up to 0.1 (and could be used in the solution phase).
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Example 6.14:
A shock tube made from a pipe with inside radius of 0.1[m] separated into sections by
a diaphragm. The length ratio of the driver section to deriven section is 0.4. The initial
pressure at the driver section is 1000 [Bar] and its length is 2 [m]. Calculate the energy
available in the driver section.

Solution

The calculations require that the ξe will be found. This information will be available
at a later stage however now, as first approximation ξA can be used instead. Thus,
the ratio of the section lengths, LA/LB, has to converted into ξA. Utilizing equation
(6.139)

1
ξA

=
LA + LB

LA
= 1 +

LB
LA

−→ ξA =
1

1 +
LB
LA

(6.XIV.a)

ξA =
1

1 +
1

0.4

∼ 0.285

As estimate according the Figure 6.29 the dimensionless work f(ξe) ∼ f(ξA) ∼ 0.25
Thus the work will be

W = AL PA1f(ξ) = π × 0.12 ×

L︷ ︸︸ ︷
2

(
1 +

1
0.4

)
×1000 105 × 0.25 ∼ 2748.893kJ

(6.XIV.b)
This number is only the estimate and the exact number will be calculated later when
dimensionless length, ξe is calculated.

End Solution

Energy balance on the driver section reads

EuA1 − EuAe = WA1−→e = f (ξe) AL PA1 (6.143)

Utilizing the expression for the work (equation (6.142)) and further assuming an ideal
gas model with a constant specific heat equation (6.143) can be written as

mA CvA TA1

(
1− TAe

TA1

)

AL PA1
= f (ξe) (6.144)

Substituting the isentropic relationship between the temperature and pressure, and equa-
tion 6.135 into equation (6.144) yields

ξA CvA

RA


1−

(
PAe

PA1

)kA−1
kA


 = f (ξe) (6.145)
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Equation (6.145) puts a cap or a limit on the driver pressure ratio. The right
hand side is limited by ξe which is limited by ξB. Substituting this value into equation
(6.145) yields

PAe|cap = PA1

(
1− RA f(ξB)

CvA ξA

) kA
kA−1

(6.146)

This is the lowest equilibrium pressure that can be achieved on the isentropic path. It
can be noticed that ratio RA f(ξB) < CvA ξA is always true. Hence, this indicates that
the maximum energy which can be extracted from the driver depends on the ratio of the
driver length to the driven section length. This limit means that any further increase
of the pressure leads to a further increase in the equilibrium pressure and hence, the
potential maximum energy extraction17.

The energy balance18 of the driven section (compressed gas) is

EuB1 − EuBe = −WB1−→e = −f(ξe) (6.147)

Utilizing the expression for the work (equation (6.142) and further assuming ideal gas
model with a constant specific heat, equation (6.147) can be written as

mB CvB (TBe − TB1)
ALPA1

= −f(ξe) (6.148)

Rearranging equation (6.148) yields

ξB PB1 CvB

PA1 RB

(
1− TBe

TB1

)
= −f(ξe) (6.149)

Notice that the temperature ratio cannot be substituted as it was done for the
driver section because the process is not isentropic in the expansion section. However,
the mass conservation can be applied as

TBe

TB1
=

PBe (ξB − ξe)
PB1ξB

(6.150)

Substituting equation (6.150) into equation (6.149) yields

ξB
PB1 CvB

PA1RB

(
1− PBe (ξB − ξe)

PB1ξB

)
= −f(ξe) (6.151)

The equilibrium requirement dictates that the PBe = PAe. Thus, equation (6.151)
and equation (6.145) have only two unknowns, ξ and PAe and mathematically are
solvable. The solution provides the displacement and the final pressure which are related

17This point refers to how much energy can be extracted from a given conditions.
18It must be noted that the expression for the work, f(ξe) can be derived for the expansion chamber.

The pressure in the expansion chamber is known and hence the integration can be carried for the
process. It is assumed that the work is transferred to that chamber because energy is conserved.



6.4. SHOCK TUBE 189

to the final temperature. With the expression for the work and the displacement value,
the maximum temperature can be calculated. The solution can be obtained by numerous
methods to solve two nonlinear equations and no discussion is needed on this point.

In the solution, the displacement was found first and later the relationship between
the displacement and pressure which was obtained by manipulating equation (6.145) to
be

PAe

PA1
=

(
1− f(ξe (kA − 1)

ξA

)
def≡ g(ξe) (6.152)
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Fig. -6.30. The equilibrium length as a function of the initial dimensionless length.
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Fig. -6.32. Explanation why the ruptured diaphragm can-
not reach maximum temperature.

The results are presented
in Figures 6.30 and Figure 6.31.
A shock tube operates close to
the model will produce a larger
temperature increase in the ex-
pansion shock. The ruptured di-
aphragm, the common method
used in shock tube, on the other
hand has inherently two main
causes of the energy loss. The
strongest deviation from the ideal
isentropic model, suggested by
this model, is the “penetration”
of the reflecting shocks into the driver section as seen in Figure 6.32 by the light purple
color in the middle. In this zone, the energy which was supposed to heat the driven
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Fig. -6.31. The equilibrium pressure as a function of the initial dimensionless length.

section enters into the driver section. This fact reduces the potential energy in the
driven section hence the maximum temperature. The second cause is the large part
of the driver section such as the diagonal lines marked in Figure 6.32. Thus making
infinitely long driver section does not produces any additional increase of the driven
section temperature.

The secondary cause is the shocks and strong sound waves (minor shock waves)
which appears in the entire zone of the driver section. The difference between the two
causes is that the first one takes energy from the expansion section while the second
one does not but increase the entropy in the driver section.

Example 6.15:
If the diaphragm in example 6.14 is the ruptured, estimate the maximum temperature.
Specify the number of shocks you are using and explain why this number was selected.
Assume that the pressure in the driven section is 1[Bar] and the temperature in the
whole shock tube is 300◦C.

Solution

Under construction
End Solution

Example 6.16:
In example 6.14 the exact value of the dimensionless was not calculated but rather
estimated. In this example calculate the value of the expansion. The shock tube radius
is 0.1[m] and the length ratio of the driver section to deriven section is 1.0. The initial
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pressure at the driver section is 1000 [Bar] and its length is 2 [m]. Calculate the energy
available in the driver section. Calculate the dimensionless equilibrium expansion length
ξe and the equilibrium pressure.

Solution

Now the value of dimensionless expansion length, ξe can be found. Utilizing the value
length ratio it can be obtained that

ξA =
1

1 +
1

1.0

= 0.5

The pressure ratio is 1000 and with ξA one can get that ξe ∼ 0.32 from Figure 6.30 .
Notice that the value for the pressure ratio 1000 is not given in the figure. However,
the values for pressure ratio above 250 and above are converging to the same values.
The expansion length is

L = LA

(
1 +

LB
LA

)
= 2× 2 = 4[m]

With this value, the potential energy or work (see Figure 6.29 the red line) is

W = AL PA1f(ξ) = π × 0.12 × 4× 1000 105 × 1000 105 × 0.3 ∼ 3769.9[kJ ]

The equilibrium pressure is according to Figure 6.29 the pressure ration 0.67. Hence
the pressure ratio is

Pe = PA
Pe

PA
= 1000[Bar]× 0.67 = 670[Bar]

Notice that this pressure significantly lower than the pressure obtained after a shock or
even a reflective shock.

End Solution

Example 6.17:
The conditions in the driven section attached to the driver of Example 6.16 are the
pressure is 1[Bar] and specific heat is 0.7 [kj/kg◦C]. Calculate the final temperature if
there is not heat transfer. Assume that the universal constant R = 287j/kg◦C.

Solution

The transfer energy was calculated in Example 6.16 as 3769.9 [kJ]. The mass in the
driven chamber is

mB =
P V

R T
=

100, 000× π 0.12 ×
LB︷︸︸︷
2

287× 300
= 0.073kg
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The energy balance on the deriven section expressed by equation (6.148)

TBe = TB2 +
AL PA1 f(ξe)

mCp
=

3769.9
0.073× 0.7

∼ 73775[K]

This value is much higher that will be expect in traditional ruptured diaphragm.
End Solution

Fig. -6.33. Ames Research Center Shock Tube with Thomas N. Canning.

Example 6.18:
In Figure 6.33 showing a shock tube with driver with (32 ft) long and diameter (13in).
The expansion diameter is 48 ft long and 7in diameter. The operational pressure in
some cases was 250 [Bar] and the absolute pressure in the driven section was about
0.25 [Bar]. Calculate the energy lost using the ruptured diaphragm instead of using the
moving diaphragm. You can assume that only the initial shock and the first reflecting
shock contributing to the temperature increase and the rest is used solely to increase
the entropy.

Supplemental Problems
1. In the analysis of the maximum temperature in the shock tube, it was assumed

that process is isentropic. If this assumption is not correct would the maximum
temperature obtained is increased or decreased?

2. In the analysis of the maximum temperature in the shock wave it was assumed
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that process is isentropic. Clearly, this assumption is violated when there are
shock waves. In that cases, what is the reasoning behind use this assumption any
why?

6.5 Shock with Real Gases

6.6 Shock in Wet Steam

6.7 Normal Shock in Ducts

The flow in ducts is related to boundary layer issues. For a high Reynolds number, the
assumption of an uniform flow in the duct is closer to reality. It is normal to have a large
Mach number with a large Re number. In that case, the assumptions in construction
of these models are acceptable and reasonable.

6.8 Additional Examples for Moving Shocks

Example 6.19:

exit

distance

valve

Fig. -6.34. Figure for Example (6.19)

This problem was taken from
the real industrial manufacturing
world. An engineer is required
to design a cooling system for
a critical electronic device. The
temperature should not increase
above a certain value. In this sys-
tem, air is supposed to reach the
pipe exit as quickly as possible
when the valve is opened (see Figure (6.34)). The distance between between the
valve and the pipe exit is 3[m]. The conditions upstream of the valve are 30[Bar] and
27◦C . Assume that there isn’t any resistance whatsoever in the pipe. The ambient
temperature is 27◦C and 1[Bar]. Assume that the time scale for opening the valve is
significantly smaller than the typical time of the pipe (totally unrealistic even though
the valve manufacture claims of 0.0002 [sec] valve to be completely opened). After
building the system, the engineer notices that the system does not cool the device fast
enough and proposes to increase the pressure and increase the diameter of the pipe.
Comment on this proposal. Where any of these advises make any sense in the light
of the above assumptions? What will be your recommendations to the manufacturing
company? Plot the exit temperature and the mass flow rate as a function of the time.

Solution

This problem is known as the suddenly open valve problem in which the shock choking
phenomenon occurs. The time it takes for the shock to travel from the valve depends
on the pressure ratio

Py

Px
= 30 for which the following table is obtained
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Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

5.0850 0.41404 0.0 1.668 5.967 30.00 0.057811

The direct calculation will be by using the “upstream” Mach number, Mx = Msx =
5.0850. Therefore, the time is

t =
distance

Msx

√
k R Tx

=
3

5.0850
√

1.4× 287× 300
∼ 0.0017[sec]

The mass flow rate after reaching the exit under these assumptions remains constant
until the uncooled material reaches the exit. The time it takes for the material from
the valve to reach the exit is

t =
distance

My
′√

k R Ty

=
3

1.668
√

1.4× 287× 300× 5.967
∼ 0.0021[sec]

Velocity

Mass Flow
Rate

Time[Msec]

Fig. -6.35. The results for Example
(6.19).

During that difference of time the material
is get heated instead of cooling down because of
the high temperature. The suggestion of the engi-
neer to increase the pressure will decrease the time
but will increase the temperature at the exit during
this critical time period. Thus, this suggestion con-
tradicts the purpose of the required manufacturing
needs.

To increase the pipe diameter will not change
the temperature and therefore will not change the
effects of heating. It can only increase the rate
after the initial heating spike

A possible solution is to have the valve very close to the pipe exit. Thus, the
heating time is reduced significantly. There is also the possibility of steps increase in
which every step heat released will not be enough to over heat the device. The last
possible requirement a programmable valve and very fast which its valve probably exceed
the moving shock the valve downstream. The plot of the mass flow rate and the velocity
are given in Figure 6.35.

End Solution

Example 6.20:
Example (6.19) deals with a damaging of electronic product by the temperature increase.
Try to estimate the temperature increase of the product. Plot the pipe exit temperature
as a function of the time.

Solution

To be developed
End Solution
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6.9 Tables of Normal Shocks, k = 1.4 Ideal Gas

Table -6.2. The shock wave table for k = 1.4

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

1.00 1.00000 1.00000 1.00000 1.00000 1.00000

1.05 0.95313 1.03284 1.08398 1.11958 0.99985

1.10 0.91177 1.06494 1.16908 1.24500 0.99893

1.15 0.87502 1.09658 1.25504 1.37625 0.99669

1.20 0.84217 1.12799 1.34161 1.51333 0.99280

1.25 0.81264 1.15938 1.42857 1.65625 0.98706

1.30 0.78596 1.19087 1.51570 1.80500 0.97937

1.35 0.76175 1.22261 1.60278 1.95958 0.96974

1.40 0.73971 1.25469 1.68966 2.12000 0.95819

1.45 0.71956 1.28720 1.77614 2.28625 0.94484

1.50 0.70109 1.32022 1.86207 2.45833 0.92979

1.55 0.68410 1.35379 1.94732 2.63625 0.91319

1.60 0.66844 1.38797 2.03175 2.82000 0.89520

1.65 0.65396 1.42280 2.11525 3.00958 0.87599

1.70 0.64054 1.45833 2.19772 3.20500 0.85572

1.75 0.62809 1.49458 2.27907 3.40625 0.83457

1.80 0.61650 1.53158 2.35922 3.61333 0.81268

1.85 0.60570 1.56935 2.43811 3.82625 0.79023

1.90 0.59562 1.60792 2.51568 4.04500 0.76736

1.95 0.58618 1.64729 2.59188 4.26958 0.74420

2.00 0.57735 1.68750 2.66667 4.50000 0.72087

2.05 0.56906 1.72855 2.74002 4.73625 0.69751

2.10 0.56128 1.77045 2.81190 4.97833 0.67420

2.15 0.55395 1.81322 2.88231 5.22625 0.65105
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Table -6.2. The shock wave table for k = 1.4 (continue)

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

2.20 0.54706 1.85686 2.95122 5.48000 0.62814

2.25 0.54055 1.90138 3.01863 5.73958 0.60553

2.30 0.53441 1.94680 3.08455 6.00500 0.58329

2.35 0.52861 1.99311 3.14897 6.27625 0.56148

2.40 0.52312 2.04033 3.21190 6.55333 0.54014

2.45 0.51792 2.08846 3.27335 6.83625 0.51931

2.50 0.51299 2.13750 3.33333 7.12500 0.49901

2.75 0.49181 2.39657 3.61194 8.65625 0.40623

3.00 0.47519 2.67901 3.85714 10.33333 0.32834

3.25 0.46192 2.98511 4.07229 12.15625 0.26451

3.50 0.45115 3.31505 4.26087 14.12500 0.21295

3.75 0.44231 3.66894 4.42623 16.23958 0.17166

4.00 0.43496 4.04688 4.57143 18.50000 0.13876

4.25 0.42878 4.44891 4.69919 20.90625 0.11256

4.50 0.42355 4.87509 4.81188 23.45833 0.09170

4.75 0.41908 5.32544 4.91156 26.15625 0.07505

5.00 0.41523 5.80000 5.00000 29.00000 0.06172

5.25 0.41189 6.29878 5.07869 31.98958 0.05100

5.50 0.40897 6.82180 5.14894 35.12500 0.04236

5.75 0.40642 7.36906 5.21182 38.40625 0.03536

6.00 0.40416 7.94059 5.26829 41.83333 0.02965

6.25 0.40216 8.53637 5.31915 45.40625 0.02498

6.50 0.40038 9.15643 5.36508 49.12500 0.02115

6.75 0.39879 9.80077 5.40667 52.98958 0.01798

7.00 0.39736 10.46939 5.44444 57.00000 0.01535
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Table -6.2. The shock wave table for k = 1.4 (continue)

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

7.25 0.39607 11.16229 5.47883 61.15625 0.01316

7.50 0.39491 11.87948 5.51020 65.45833 0.01133

7.75 0.39385 12.62095 5.53890 69.90625 0.00979

8.00 0.39289 13.38672 5.56522 74.50000 0.00849

8.25 0.39201 14.17678 5.58939 79.23958 0.00739

8.50 0.39121 14.99113 5.61165 84.12500 0.00645

8.75 0.39048 15.82978 5.63218 89.15625 0.00565

9.00 0.38980 16.69273 5.65116 94.33333 0.00496

9.25 0.38918 17.57997 5.66874 99.65625 0.00437

9.50 0.38860 18.49152 5.68504 105.12500 0.00387

9.75 0.38807 19.42736 5.70019 110.73958 0.00343

10.00 0.38758 20.38750 5.71429 116.50000 0.00304

Table -6.3. Table for a Reflective Shock from a suddenly closed end (k=1.4)

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

1.006 0.99403 0.01 0.0 1.004 1.014 1.00000

1.012 0.98812 0.02 0.0 1.008 1.028 1.00000

1.018 0.98227 0.03 0.0 1.012 1.043 0.99999

1.024 0.97647 0.04 0.0 1.016 1.057 0.99998

1.030 0.97074 0.05 0.0 1.020 1.072 0.99997

1.037 0.96506 0.06 0.0 1.024 1.087 0.99994

1.043 0.95944 0.07 0.0 1.028 1.102 0.99991

1.049 0.95387 0.08 0.0 1.032 1.118 0.99986

1.055 0.94836 0.09 0.0 1.036 1.133 0.99980

1.062 0.94291 0.10 0.0 1.040 1.149 0.99973
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Table -6.3. Table for Reflective Shock from suddenly closed valve (end) (k=1.4)(continue)

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

1.127 0.89128 0.20 0.0 1.082 1.316 0.99790

1.196 0.84463 0.30 0.0 1.126 1.502 0.99317

1.268 0.80251 0.40 0.0 1.171 1.710 0.98446

1.344 0.76452 0.50 0.0 1.219 1.941 0.97099

1.423 0.73029 0.60 0.0 1.269 2.195 0.95231

1.505 0.69946 0.70 0.0 1.323 2.475 0.92832

1.589 0.67171 0.80 0.0 1.381 2.780 0.89918

1.676 0.64673 0.90 0.0 1.442 3.112 0.86537

1.766 0.62425 1.00 0.0 1.506 3.473 0.82755

1.858 0.60401 1.10 0.0 1.576 3.862 0.78652

1.952 0.58578 1.20 0.0 1.649 4.280 0.74316

2.048 0.56935 1.30 0.0 1.727 4.728 0.69834

2.146 0.55453 1.40 0.0 1.810 5.206 0.65290

2.245 0.54114 1.50 0.0 1.897 5.715 0.60761

2.346 0.52904 1.60 0.0 1.990 6.256 0.56312

2.448 0.51808 1.70 0.0 2.087 6.827 0.51996

2.552 0.50814 1.80 0.0 2.189 7.431 0.47855

2.656 0.49912 1.90 0.0 2.297 8.066 0.43921

2.762 0.49092 2.00 0.0 2.410 8.734 0.40213

3.859 0.43894 3.00 0.0 3.831 17.21 0.15637

5.000 0.41523 4.00 0.0 5.800 29.00 0.061716

6.162 0.40284 5.00 0.0 8.325 44.14 0.026517

7.336 0.39566 6.00 0.0 11.41 62.62 0.012492

8.517 0.39116 7.00 0.0 15.05 84.47 0.00639

9.703 0.38817 8.00 0.0 19.25 1.1E+2 0.00350
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Table -6.3. Table for Reflective Shock from suddenly closed valve (end) (k=1.4)(continue)

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

10.89 0.38608 9.00 0.0 24.01 1.4E+2 0.00204

12.08 0.38457 10.0 0.0 29.33 1.7E+2 0.00125

Table -6.4. Table for shock propagating from suddenly opened valve (k=1.4)

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

1.006 0.99402 0.0 0.01 1.004 1.014 1.00000

1.012 0.98807 0.0 0.02 1.008 1.028 1.00000

1.018 0.98216 0.0 0.03 1.012 1.043 0.99999

1.024 0.97629 0.0 0.04 1.016 1.058 0.99998

1.031 0.97045 0.0 0.05 1.020 1.073 0.99996

1.037 0.96465 0.0 0.06 1.024 1.088 0.99994

1.044 0.95888 0.0 0.07 1.029 1.104 0.99990

1.050 0.95315 0.0 0.08 1.033 1.120 0.99985

1.057 0.94746 0.0 0.09 1.037 1.136 0.99979

1.063 0.94180 0.0 0.10 1.041 1.152 0.99971

1.133 0.88717 0.0 0.20 1.086 1.331 0.99763

1.210 0.83607 0.0 0.30 1.134 1.541 0.99181

1.295 0.78840 0.0 0.40 1.188 1.791 0.98019

1.390 0.74403 0.0 0.50 1.248 2.087 0.96069

1.495 0.70283 0.0 0.60 1.317 2.441 0.93133

1.613 0.66462 0.0 0.70 1.397 2.868 0.89039

1.745 0.62923 0.0 0.80 1.491 3.387 0.83661

1.896 0.59649 0.0 0.90 1.604 4.025 0.76940

2.068 0.56619 0.0 1.00 1.744 4.823 0.68907

2.269 0.53817 0.0 1.100 1.919 5.840 0.59699
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Table -6.4. Table for shock propagating from suddenly opened valve (k=1.4)

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

2.508 0.51223 0.0 1.200 2.145 7.171 0.49586

2.799 0.48823 0.0 1.300 2.450 8.975 0.38974

3.167 0.46599 0.0 1.400 2.881 11.54 0.28412

3.658 0.44536 0.0 1.500 3.536 15.45 0.18575

4.368 0.42622 0.0 1.600 4.646 22.09 0.10216

5.551 0.40843 0.0 1.700 6.931 35.78 0.040812

8.293 0.39187 0.0 1.800 14.32 80.07 0.00721

8.821 0.39028 0.0 1.810 16.07 90.61 0.00544

9.457 0.38870 0.0 1.820 18.33 1.0E + 2 0.00395

10.24 0.38713 0.0 1.830 21.35 1.2E + 2 0.00272

11.25 0.38557 0.0 1.840 25.57 1.5E + 2 0.00175

12.62 0.38402 0.0 1.850 31.92 1.9E + 2 0.00101

14.62 0.38248 0.0 1.860 42.53 2.5E + 2 0.000497

17.99 0.38096 0.0 1.870 63.84 3.8E + 2 0.000181

25.62 0.37944 0.0 1.880 1.3E+2 7.7E + 2 3.18E−5

61.31 0.37822 0.0 1.888 7.3E+2 4.4E + 3 0.0

62.95 0.37821 0.0 1.888 7.7E+2 4.6E + 3 0.0

64.74 0.37820 0.0 1.888 8.2E+2 4.9E + 3 0.0

66.69 0.37818 0.0 1.888 8.7E+2 5.2E + 3 0.0

68.83 0.37817 0.0 1.888 9.2E+2 5.5E + 3 0.0

71.18 0.37816 0.0 1.889 9.9E+2 5.9E + 3 0.0

73.80 0.37814 0.0 1.889 1.1E+3 6.4E + 3 0.0

76.72 0.37813 0.0 1.889 1.1E+3 6.9E + 3 0.0

80.02 0.37812 0.0 1.889 1.2E+3 7.5E + 3 0.0

83.79 0.37810 0.0 1.889 1.4E+3 8.2E + 3 0.0
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Table -6.5. Table for shock propagating from a suddenly opened valve (k=1.3)

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

1.0058 0.99427 0.0 0.010 1.003 1.013 1.00000

1.012 0.98857 0.0 0.020 1.006 1.026 1.00000

1.017 0.98290 0.0 0.030 1.009 1.040 0.99999

1.023 0.97726 0.0 0.040 1.012 1.054 0.99998

1.029 0.97166 0.0 0.050 1.015 1.067 0.99997

1.035 0.96610 0.0 0.060 1.018 1.081 0.99995

1.042 0.96056 0.0 0.070 1.021 1.096 0.99991

1.048 0.95506 0.0 0.080 1.024 1.110 0.99987

1.054 0.94959 0.0 0.090 1.028 1.125 0.99981

1.060 0.94415 0.0 0.100 1.031 1.140 0.99975

1.126 0.89159 0.0 0.200 1.063 1.302 0.99792

1.197 0.84227 0.0 0.300 1.098 1.489 0.99288

1.275 0.79611 0.0 0.400 1.136 1.706 0.98290

1.359 0.75301 0.0 0.500 1.177 1.959 0.96631

1.452 0.71284 0.0 0.600 1.223 2.252 0.94156

1.553 0.67546 0.0 0.700 1.274 2.595 0.90734

1.663 0.64073 0.0 0.800 1.333 2.997 0.86274

1.785 0.60847 0.0 0.900 1.400 3.471 0.80734

1.919 0.57853 0.0 1.00 1.478 4.034 0.74136

2.069 0.55074 0.0 1.100 1.570 4.707 0.66575

2.236 0.52495 0.0 1.200 1.681 5.522 0.58223

2.426 0.50100 0.0 1.300 1.815 6.523 0.49333

2.644 0.47875 0.0 1.400 1.980 7.772 0.40226

2.898 0.45807 0.0 1.500 2.191 9.367 0.31281

3.202 0.43882 0.0 1.600 2.467 11.46 0.22904
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Table -6.5. Table for shock propagating from a suddenly opened valve (k=1.3)

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

3.576 0.42089 0.0 1.700 2.842 14.32 0.15495

4.053 0.40418 0.0 1.800 3.381 18.44 0.093988

4.109 0.40257 0.0 1.810 3.448 18.95 0.088718

4.166 0.40097 0.0 1.820 3.519 19.49 0.083607

4.225 0.39938 0.0 1.830 3.592 20.05 0.078654

4.286 0.39780 0.0 1.840 3.669 20.64 0.073863

4.349 0.39624 0.0 1.850 3.749 21.25 0.069233

4.415 0.39468 0.0 1.860 3.834 21.90 0.064766

4.482 0.39314 0.0 1.870 3.923 22.58 0.060462

4.553 0.39160 0.0 1.880 4.016 23.30 0.056322

4.611 0.39037 0.0 1.888 4.096 23.91 0.053088

4.612 0.39035 0.0 1.888 4.097 23.91 0.053053

4.613 0.39034 0.0 1.888 4.098 23.92 0.053018

4.613 0.39033 0.0 1.888 4.099 23.93 0.052984

4.614 0.39031 0.0 1.888 4.099 23.93 0.052949

4.615 0.39030 0.0 1.889 4.100 23.94 0.052914

4.615 0.39029 0.0 1.889 4.101 23.95 0.052879

4.616 0.39027 0.0 1.889 4.102 23.95 0.052844

4.616 0.39026 0.0 1.889 4.103 23.96 0.052809

4.617 0.39025 0.0 1.889 4.104 23.97 0.052775



CHAPTER 7

Normal Shock in Variable Duct
Areas

subsonic flow after

a shock

distance, x
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P0

PB = P0

Supersonic

Subsonic

M < 1

a

b

c

d

M > 1

Fig. -7.1. The flow in the nozzle with different
back pressures.

In the previous two chapters, the flow in
a variable area duct and the normal shock
(discontinuity) were discussed. A discus-
sion of the occurrences of shock in flow in
a variable is presented. As it is was pre-
sented before, the shock can occur only
in steady state when there is a super-
sonic flow. but also in steady state cases
when there is no supersonic flow (in sta-
tionary coordinates). As it was shown in
Chapter 6, the gas has to pass through
a converging–diverging nozzle to obtain a
supersonic flow.

In the previous chapter, the flow
in a convergent–divergent nuzzle was pre-
sented when the pressure ratio was above
or below the special range. This Chapter
will present the flow in this special range
of pressure ratios. It is interesting to note
that a normal shock must occur in these
situations (pressure ratios).

In Figure 7.1 the reduced pressure distribution in the converging–diverging noz-
zle is shown in its whole range of pressure ratios. When the pressure ratio, PB is between
point “a” and point “b” the flow is different from what was discussed before. In this

203
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case, no continuous pressure possibly can exists. Only in one point where PB = Pb

continuous pressure exist. If the back pressure, PB is smaller than Pb a discontinuous
point (a shock) will occur. In conclusion, once the flow becomes supersonic, only exact
geometry can achieve continuous pressure flow.

In the literature, some refer to a nozzle with an area ratio such point b as
above the back pressure and it is referred to as an under–expanded nozzle. In the
under–expanded case, the nozzle doesn’t provide the maximum thrust possible. On
the other hand, when the nozzle exit area is too large a shock will occur and other
phenomenon such as plume will separate from the wall inside the nozzle. This nozzle
is called an over–expanded nozzle. In comparison of nozzle performance for rocket and
aviation, the over–expanded nozzle is worse than the under–expanded nozzle because
the nozzle’s large exit area results in extra drag.

The location of the shock is determined by geometry to achieve the right back
pressure. Obviously if the back pressure, PB, is lower than the critical value (the only
value that can achieve continuous pressure) a shock occurs outside of the nozzle. If the
back pressure is within the range of Pa to Pb than the exact location determines that
after the shock the subsonic branch will match the back pressure.

P0 = 4[Bar]

T0 = 308K

A
∗ = 3[cm2]

x y

troat

exit
point "e"

Ashock = 6[cm2]

Aexit = 9[cm2]

Fig. -7.2. A nozzle with normal shock.

The first example is for academic
reasons. It has to be recognized that the
shock wave isn’t easily visible (see Mach’s
photography techniques). Therefore, this
example provides a demonstration of the
calculations required for the location even
if it isn’t realistic. Nevertheless, this ex-
ample will provide the fundamentals to ex-
plain the usage of the tools (equations and
tables) that were developed so far.

Example 7.1:
A large tank with compressed air is attached into a converging–diverging nozzle at
pressure 4[Bar] and temperature of35◦C. Nozzle throat area is 3[cm2] and the exit
area is 9[cm2]. The shock occurs in a location where the cross section area is 6[cm2].
Calculate the back pressure and the temperature of the flow. (It should be noted that
the temperature of the surrounding is irrelevant in this case.) Also determine the critical
points for the back pressure (point “a” and point “b”).

Solution

Since the key word “large tank” was used that means that the stagnation temperature
and pressure are known and equal to the conditions in the tank.

First, the exit Mach number has to be determined. This Mach number can
be calculated by utilizing the isentropic relationship from the large tank to the shock
(point “x”). Then the relationship developed for the shock can be utilized to calculate
the Mach number after the shock, (point “y”). From the Mach number after the
shock, My, the Mach number at the exit can be calculated by utilizing the isentropic
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relationship.
It has to be realized that for a large tank, the inside conditions are essentially the

stagnation conditions (this statement is said without a proof, but can be shown that the
correction is negligible for a typical dimension ratio that is over 100. For example, in the
case of ratio of 100 the Mach number is 0.00587 and the error is less than %0.1). Thus,
the stagnation temperature and pressure are known T0 = 308K and P0 = 4[Bar]. The
star area (the throat area), A∗, before the shock is known and given as well.

Ax

A∗
=

6
3

= 2

With this ratio (A/A∗ = 2) utilizing the Table (6.2) or equation (5.47) or the GDC–
Potto, the Mach number, Mx is about 2.197 as shown table below:

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

2.1972 0.50877 0.18463 2.0000 0.09393 0.18787

With this Mach number, Mx = 2.1972 the Mach number, My can be obtained.
From equation (6.22) or from Table (5.2) My

∼= 0.54746. With these values, the
subsonic branch can be evaluated for the pressure and temperature ratios.

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

2.1972 0.54743 1.8544 2.9474 5.4656 0.62941

From Table (5.2) or from equation (5.11) the following Table for the isentropic
relationship is obtained

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

0.54743 0.94345 0.86457 1.2588 0.81568 1.0268

Again utilizing the isentropic relationship the exit conditions can be evaluated.
With known Mach number the new star area ratio, Ay/A∗ is known and the exit area
can be calculated as

Ae

A∗
=

Ae

Ay
× Ay

A∗
= 1.2588× 9

6
= 1.8882

with this area ratio, Ae

A∗ = 1.8882, one can obtain using the isentropic relationship as

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

0.32651 0.97912 0.94862 1.8882 0.92882 1.7538
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Since the stagnation pressure is constant as well the stagnation temperature, the
exit conditions can be calculated.

Pexit =
(

Pexit

P0

)(
P0

Py

)(
Py

Px

) (
Px

P0

)
P0

=0.92882×
(

1
0.81568

)
× 5.466× 0.094× 4

∼=2.34[Bar]

The exit temperature is

Texit =
(

Texit

T0

) (
T0

Ty

)(
Ty

Tx

) (
Tx

T0

)
T0

=0.98133×
(

1
0.951

)
× 1.854× 0.509× 308

∼=299.9K

For the “critical” points ”a” and ”b” are the points that the shock doesn’t occur
and yet the flow achieve Mach equal 1 at the throat. In that case we don’t have to go
through that shock transition. Yet we have to pay attention that there two possible back
pressures that can “achieve” it or target. The area ratio for both cases, is A/A∗ = 3
In the subsonic branch (either using equation or the isentropic table or GDC-Potto as

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

0.19745 0.99226 0.98077 3.0000 0.97318 2.9195

2.6374 0.41820 0.11310 3.0000 0.04730 0.14190

Pexit =
(

Pexit

P0

)
P0 = 0.99226× 4 ∼=3.97[Bar]

For the supersonic sonic branch

Pexit =
(

Pexit

P0

)
P0 = 0.41820× 4 ∼=1.6728[Bar]

It should be noted that the flow rate is constant and maximum for any point beyond
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the point ”a” even if the shock is exist. The flow rate is expressed as following

ṁ = ρ∗A∗U =

ρ∗︷ ︸︸ ︷
P ∗

RT ∗
A

M=1︷︸︸︷
cM =




P∗︷ ︸︸ ︷
P ∗

P0
P0




R




T ∗

T0
T0

︸ ︷︷ ︸
T∗




A

c︷ ︸︸ ︷√
kit∗ =

(
P∗
P0

P0

)

R
(

T∗
T0

T0

)A

√
k R

T ∗

T0
T0

The temperature at the throat is:

T ∗ =
(

T ∗

T0

)
T0 = 0.833× 308 = 256.7K

The temperature at the throat reads

P ∗ =
(P ∗P0)P0

=
0.5283× 4 = 2.113[Bar]

The speed of sound is

c =
√

1.4× 287× 256.7 = 321.12[m/sec]

And the mass flow rate reads

ṁ =
4105

287× 256.7
3× 10−4 × 321.12 = 0.13[kg/sec]

It is interesting to note that in this case the choking condition is obtained (M = 1) when
the back pressure just reduced to less than 5% than original pressure (the pressure in the
tank). While the pressure to achieve full supersonic flow through the nozzle the pressure
has to be below the 42% the original value. Thus, over 50% of the range of pressure a
shock occurs some where in the nozzle. In fact in many industrial applications, these
kind situations exist. In these applications a small pressure difference can produce a
shock wave and/or a chock flow.

End Solution

For more practical example1 from industrial application point of view.

Example 7.2:
In the data from the above example (7.1) where would be shock’s location when the
back pressure is 2[Bar]?

1The meaning of the word practical is that in reality the engineer does not given the opportunity to
determine the location of the shock but rather information such as pressures and temperature.
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Solution

The solution procedure is similar to what was shown in previous Example (7.1). The
solution process starts at the nozzle’s exit and progress to the entrance.

The conditions in the tank are again the stagnation conditions. Thus, the exit
pressure is between point “a” and point “b”. It follows that there must exist a shock
in the nozzle. Mathematically, there are two main possible ways to obtain the solution.
In the first method, the previous example information used and expanded. In fact,
it requires some iterations by “smart” guessing the different shock locations. The
area (location) that the previous example did not “produce” the “right” solution (the
exit pressure was 2.113[Bar]. Here, the needed pressure is only 2[Bar] which means
that the next guess for the shock location should be with a larger area2. The second
(recommended) method is noticing that the flow is adiabatic and the mass flow rate
is constant which means that the ratio of the P0 × A∗ = Py0 ×A∗|@y (upstream

conditions are known, see also equation (5.70)).

PexitAexit

Px0 ×Ax
∗ =

PexitAexit

Py0 ×Ay
∗ =

2× 9
4× 3

= 1.5[unitless!]

With the knowledge of the ratio PA
P0A∗ which was calculated and determines the exit

Mach number. Utilizing the Table (5.2) or the GDC-Potto provides the following table
is obtained

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.38034 0.97188 0.93118 1.6575 0.90500 1.5000 0.75158

With these values the relationship between the stagnation pressures of the shock
are obtainable e.g. the exit Mach number, My, is known. The exit total pressure can
be obtained (if needed). More importantly the pressure ratio exit is known. The ratio
of the ratio of stagnation pressure obtained by

P0y

P0x

=

for Mexit︷ ︸︸ ︷(
P0y

Pexit

)(
Pexit

P0x

)
=

1
0.905

× 2
4

= 0.5525

Looking up in the Table (5.2) or utilizing the GDC-Potto provides

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

2.3709 0.52628 2.0128 3.1755 6.3914 0.55250

With the information of Mach number (either Mx or My) the area where the
shock (location) occurs can be found. First, utilizing the isentropic Table (5.2).

2Of course, the computer can be use to carry this calculations in a sophisticate way.
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M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

2.3709 0.47076 0.15205 2.3396 0.07158 0.16747

Approaching the shock location from the upstream (entrance) yields

A =
A

A∗A∗ = 2.3396× 3 ∼= 7.0188[cm2]

Note, as “simple” check this value is larger than the value in the previous example.
End Solution

7.1 Nozzle efficiency

Obviously nozzles are not perfectly efficient and there are several ways to define the
nozzle efficiency. One of the effective way is to define the efficiency as the ratio of the
energy converted to kinetic energy and the total potential energy could be converted to
kinetic energy. The total energy that can be converted is during isentropic process is

E = h0 − hexits (7.1)

where hexits is the enthalpy if the flow was isentropic. The actual energy that was
used is

E = h0 − hexit (7.2)

The efficiency can be defined as

η =
h0 − hexit

h0 − hexits

=
(Uactual)

2

(Uideal)
2 (7.3)

The typical efficiency of nozzle is ranged between 0.9 to 0.99. In the literature some
define also velocity coefficient as the ratio of the actual velocity to the ideal velocity,
Vc

Vc =
√

η =

√
(Uactual)

2

(Uideal)
2 (7.4)

There is another less used definition which referred as the coefficient of discharge as
the ratio of the actual mass rate to the ideal mass flow rate.

Cd =
ṁactual

ṁideal
(7.5)
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Example 7.3:
A nozzle is known to operate at η = 90% efficiency when the flow is shock–less. The
stagnation temperature entering to nozzle is 300 [K] with pressure 5[Bar]. The exit
static pressure is 1[Bar]. The specific heat, k, is 1.4. Calculate the exit temperature,
pressure, and Mach number of when the flow is shock free and isentropic. If the exit
pressure is higher by 10%, what is the nozzle efficiency? Calculate the exit temperature,
and Mach number for actual case. Is this results reasonable? Calculate the location
of the shock, assuming the flow isentropic in the before the shock. Assume that the
efficiency is 90% all location except the close vicinity of the shock. What the efficiency
of the nozzle with the shock? Calculate the the velocity coefficient and the coefficient
of discharge.

Solution

The isentropic flow must be supersonic because the pressure ratio is below the critical
point of 0.528282. Hence the conditions at the exit are

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

1.7085 0.63139 0.31676 1.3457 0.20000 0.26914 0.57044

The velocity at the exit has to be calculated.

U = M
√

k R T = M

√
k R T0

T

T0

= 1.7085
√

1.4× 287× 300× 0.63139

= 275.87[m/sec]

If the velocity due to various reasons is not isentropic than the efficiency must be used.

Uactual =
√

η Uideal =
√

0.9× 275.87 ∼ 261.72

The actual exit temperature is obtained from

Texit = T0 − η (T0 − Texits) = 300− 0.9× (300− 300× 0.63139) = 200.47K

The actual exit Mach number is

Mexit =
U√

k R T
=

261.72√
1.4× 287× 200.47

= 0.922

Which means that there are different velocities in the throat and other places as
well.

End Solution

7.2 Diffuser Efficiency
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Fig. -7.3. Description to clarify the definition
of diffuser efficiency.

The efficiency of the diffuser is defined as
the ratio of the enthalpy change that oc-
curred between the entrance to exit stag-
nation pressure to the kinetic energy.

η =
2(h3 − h1)

U1
2 =

h3 − h1

h01 − h1
(7.6)

For perfect gas equation (7.6) can be con-
verted to

η =
2 Cp (T3 − T1)

U1
2 (7.7)

And further expanding equation (7.7) re-
sults in

η =
2 kR

k−1T1

(
T3
T1
− 1

)

c1
2M1

2 =
2

k−1

(
T3
T1
− 1

)

M1
2 =

2
M1

2(k − 1)

((
T3

T1

) k−1
k

− 1

)
(7.8)

Example 7.4:

heat
out

cooler

Compressor

capacitor

1 2 3 4

nozzle Diffuser

A
∗

n A
∗

d

Fig. -7.4. Schematic of a supersonic tunnel in a
continuous region (and also for Example (7.4).

A wind tunnel combined from a
nozzle and a diffuser (actually two
nozzles connected by a constant
area see Figure (7.4)) the required
condition at point 3 are: M =
3.0 and pressure of 0.7[Bar] and
temperature of 250K. The cross
section in area between the nuzzle
and diffuser is 0.02[m2]. What is
area of nozzle’s throat and what
is area of the diffuser’s throat to
maintain chocked diffuser with sub-
sonic flow in the expansion sec-
tion. k = 1.4 can be assumed.
Assume that a shock occurs in the
test section.

Solution

The condition at M = 3 is summarized in following table

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

3.0000 0.35714 0.07623 4.2346 0.02722 0.11528 0.65326
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The nozzle area can be calculated by

A∗n =
A?

A
A = 0.02/4.2346 = 0.0047[m2]

In this case, P0A
∗ is constant (constant mass flow). First the stagnation behind the

shock will be

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

3.0000 0.47519 2.6790 3.8571 10.3333 0.32834

A∗d =
P0n

P0d

A∗n ∼ 1
0.32834

0.0047 ∼ 0.0143[m3]

End Solution

Example 7.5:
A shock is moving at 200 [m/sec] in pipe with gas with k = 1.3, pressure of 2 [Bar]
and temperature of 350K. Calculate the conditions after the shock.

Solution

This is a case of completely and suddenly open valve with the shock velocity, temper-
ature and pressure “upstream” known. In this case Potto–GDC provides the following
table

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

5.5346 0.37554 0.0 1.989 5.479 34.50 0.021717

The calculations were carried as following: First calculate the Mx as

Mx = Us/
√

k ∗ 287. ∗ Tx

Then calculate the My by using Potto-GDC or utilize the Tables. For example Potto-
GDC (this code was produce by the program)

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

5.5346 0.37554 5.4789 6.2963 34.4968 0.02172

The calculation of the temperature and pressure ratio also can be obtain by the same
manner. The “downstream” shock number is

Msy =
Us√

k ∗ 287. ∗ Tx ∗
(

Ty

Tx

) ∼ 2.09668
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Finally utilizing the equation to calculate the following

My

′
= Msy −My = 2.09668− 0.41087 ∼ 1.989

End Solution

Example 7.6:
An inventor interested in a design of tube and piston so that the pressure is doubled in
the cylinder when the piston is moving suddenly. The propagating piston is assumed to
move into media with temperature of 300K and atmospheric pressure of 1[Bar]. If the
steady state is achieved, what will be the piston velocity?

Solution

This is an open valve case in which the pressure ratio is given. For this pressure ratio
of Py/Px = 2 the following table can be obtained or by using Potto–GDC

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

1.3628 0.75593 1.2308 1.6250 2.0000 0.96697

The temperature ratio and the Mach numbers for the velocity of the air (and the piston)
can be calculated. The temperature at “downstream” (close to the piston) is

Ty = Tx
Ty

Tx
= 300× 1.2308 = 369.24[◦C]

The velocity of the piston is then

Uy = My ∗ cy = 0.75593 ∗
√

1.4 ∗ 287 ∗ 369.24 ∼ 291.16[m/sec]

End Solution

Example 7.7:
A flow of gas is brought into a sudden stop. The mass flow rate of the gas is 2 [kg/sec]
and cross section A = 0.002[m3]. The imaginary gas conditions are temperature is 350K
and pressure is 2[Bar] and R = 143[j/kg K] and k = 1.091 (Butane?). Calculate the
conditions behind the shock wave.

Solution

This is the case of a closed valve in which mass flow rate with the area given. Thus,
the “upstream” Mach is given.

Ux

′
=

ṁ

ρA
=

ṁRT

PA
=

2× 287× 350
200000× 0.002

∼ 502.25[m/sec]
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Thus the static Mach number, Mx

′
is

Mx

′
=

Ux

′

cx
=

502.25√
1.091× 143× 350

∼ 2.15

With this value for the Mach number Potto-GDC provides

Mx My Mx

′
My

′ Ty

Tx

Py

Px

P0y

P0x

2.9222 0.47996 2.1500 0.0 2.589 9.796 0.35101

This table was obtained by using the procedure described in this book. The iteration
of the procedure are

i Mx My
Ty

Tx

Py

Px
My

′

0 3.1500 0.46689 2.8598 11.4096 0.0

1 2.940 0.47886 2.609 9.914 0.0

2 2.923 0.47988 2.590 9.804 0.0

3 2.922 0.47995 2.589 9.796 0.0

4 2.922 0.47996 2.589 9.796 0.0

5 2.922 0.47996 2.589 9.796 0.0

End Solution

Example 7.8:
A converging–diverging nozzle is attached to reservoir with pressure of 10 [Bar] and
temperature 300K. The air is released to the atmosphere which is about 1[Bar]. Assume
that the flow is isentropic and shock–less. Calculate the velocity at the throat. Calculate
the required throat area if the mass flow rate is 10[kg/sec]. It was measured that the
nozzle efficiency is 90%. In that case, calculate the actual required exit area (assume
that the flow in steady state and shock–free). The loss occurs in the converging section
can be assumed to be zero and the only loss occurs in the diverging section. Assume
that the spesifc heat ratio, k=1.45, and pressure heat capacity, Cp = 1.04[kJ/kg◦C].

Solution

The velocity at the throat is the critical velocity hence the star conditions (Potto–GDC
for k=1.45) are

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

1.0000 0.81633 0.63700 1.0000 0.52000 0.52000 0.52000
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The temperature at the throat is

T ∗ = T0
T ∗

T0
= 300× 0.81633 = 244.899K

The pressure at the throat is

P ∗ = P0
P ∗

P0
= 10× 0.52000 = 5.2[Bar]

The critical density, ρ∗, is

ρ∗ =
P ∗

R T ∗
=

520000
287× 244.899

∼ 7.4[kg/m3]

The throat area is obtained form the continuity equation as

A∗ =
ṁ

ρ∗
√

k R T ∗
∼ 10

7.4×√1.4× 287× 244.899
= 0.0043[m2]

The question of efficiency requires knowledge of the isentropic temperature at the exit
which can be obtained from the pressure ratio supersonic flow (using Potto–GDC) as

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

2.1534 0.48939 0.20434 1.8697 0.10000 0.18697 0.58945

It has to be noted that the above values are for the isentropic case and not the ac-
tual velocity. The actual exit temperature can be obtained from the definition of the
efficiency as

η =
T0 − Texit

T0 − Ts
=⇒ Texit = T0 − η (T0 − Ts)

∼ 300− 0.9× (300− 0.48939× 300) ∼ 162.14K

(7.VIII.a)

The energy equation can be utilized along with the actual exit temperature

¶
¶
¶7

=0

U0
2

2
− Uexit

2

2
= Cp (Texit − T0) (7.9)

The exit velocity is then

Uexit =
√

2 Cp (T0 − Texit) ∼
√

2 ∗ 1040 (300− 162.14) ∼ 535.48

The actual exit Mach number is

M =
535.48

1.4× 287× 162.14
∼ 2.09
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It is interesting to point out that when the efficiency reduced in the Mach number
reduced as well. The exit area obtain the continuity equation as

Aexit =
ṁ

ρUexit
=

10
7.4× 535.48

= 0.0025[m2]

End Solution

Example 7.9:
Engineer designed a nozzle assuming ideal conditions to obtain a known flow rate of 4
[kg/s] when the upstream reservoir conditions are known and 20[Bar] and 27◦C. The
exit pressure is given (and for part a) 1[Bar].

(a) Calculate under these conditions what are Mach number, temperature, pressure at
the throat and exit.

(b) After the operation, the measurements were made to find that the achieved the
same flow rate 4[kg/s] but the correct back pressure for shock–less supersonic flow
was 2.0 [Bar]. Calculate the nozzle efficiency. What is the required exit so the
expansion will be as in the initial design (1[Bar]). For air take R = 287J/kgK,
and k = 1.4.

Solution

(a) The speed of sound at the throat (equation (5.14)) is

c∗ =

√√√√√k R
2 T0

k + 2︸ ︷︷ ︸
ρ∗

=

√
1.4× 287× 2× 300

1 + 1.4
= 293.4[m/sec]

The star (throat) density is then

ρ∗ = ρ0
ρ∗

ρ0
=

P0

R T0

(
2

k + 1

) 1
k−1

=
2000000

287× 300
× 0.633938 = 14.72[kg/m3]

The throat area has to be

A∗ =
ṁ

ρ∗ c∗
=

4
14.72× 293.4

= 0.0009258[m2]

The isentropic conditions (100%) efficiency between if the flow are determined by
pressure ratio (obtained with Potto–GDC) also can be used.

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

2.6015 0.42489 0.11768 2.9000 0.05000 0.14500 0.63286
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The exit area is

Aexit = A∗ ∗ Aexit

A∗
= 0.0009258× 2.9000 ∼ 0.00268482[m2]

The ideal exit temperatuer is

Texit = 300× 0.42489 ∼ 127.5K

(b) The second part; the flow rate remains the same but the exit pressure increase to
2[Bar]. The mass flow rate is remained constant hence

ṁ = ρexit Aexit Mexit cexit =

ρexit︷ ︸︸ ︷
Pexit

R Texit
Aexit Mexit

√
k R Texit

(7.IX.a)

Rearranging equation (7.IX.a) results in

ṁ =
Pexit Aexit Mexit

√
k√

R Texit

(7.IX.b)

The energy equation can be used as following

T0

Texit
= 1 +

k − 1
2

Mexit
2 (7.IX.c)

There are two unknowns, Texit and Mexit, and two equations this system can be
solved. The definition of the Fliegner’s number (see page 99 equation (5.52).)
relates the flow rate with the stagnation pressure and temperature3. Naturally
equation (7.IX.a) can be written as

Mexit =
ṁ
√

R Texit

Pexit Aexit

√
k

=
ṁ

c0︷ ︸︸ ︷√
k R T0

P0 A∗
1
k

√
Texit

T0

A∗

Aexit

P0

Pexit

(7.IX.d)

or with regular definitions of the bar parameters as

Mexit =
FnFnFn

k

√
Texit

T0

A∗

Aexit

P0

Pexit
=

FnFnFn
√

T

k P A

or T =
(

k P A

FnFnFn

)2

Mexit
2

(7.IX.e)

3The Fliegner number, FnFnFn, is used because observation of the definition shows that

FnFnFn ≡ ṁ c0

A∗ P0
≡ ṁ

√
k R T0

A∗ P0

is constant for all choked flow.
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Combining equation (7.IX.c) and (7.IX.e) results in

1 +
k − 1

2
Mexit

2 =
(

FnFnFn

k P A

)2 1
Mexit

2

or
k − 1

2
Mexit

4 + Mexit
2 −

(
FnFnFn

k P A

)2

= 0

(7.IX.f)

Equation (7.IX.f) in a quadratic equation for Mexit
2 and the solution is

Mexit
2 =

−1±
√

1 + 2 (k − 1)
(

FnFnFn

k P A

)2

k − 1

(7.IX.g)

The exit Mach number must be positive and hence must occur only with the positive
sign a

Mexit =

√√√√√√−1 +

√
1 +

2 (k − 1)
k2

(
FnFnFn

P A

)2

k − 1

(7.IX.h)

Figure 7.5 exhibits three dimensionless parameters which controlling the problem. It
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(

k P A

Fn
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= k

Fig. -7.5. Exit Mach number for non–ideal expansion in a converging–diverging nozzle general
solution. The minimum exit number is one (1) since the solution refers to supersonic flow.

must be noted that exit Mach number is limited by one (1). When the flow become
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subsonic, (M < 1), there must be a shock if the flow was choked at the throat.
The efficiency is not due to construction of the nuzzle but rather the operation of
the nuzzle. Hence, definition of nuzzle efficiency does not involve situation with
shocks. On the other hand, the maximum Mach number is limited by the second
law. The knowledge of these parameters yield the solution. The solution for the
exit temperature, Texit is obtained by utilizing the same governing equations. From
equation (7.IX.e) can be transformed into Substituting into equation (7.IX.c)

1
T

= 1 +
k − 1

2

(
FnFnFn

k P A

)2

T (7.IX.i)

or after rearrangement equation (7.IX.i) becomes

k − 1
2

(
FnFnFn

k P A

)2

T
2

+ T − 1 = 0 (7.IX.j)

The solution of equation (7.IX.j) is

T =
−1±

√
1 + 2 (k − 1)

(
FnFnFn

k P A

)2

(k − 1)
(

FnFnFn

k P A

)2
(7.IX.k)

Since the reltaive temperature, T is only possitive hence,

T =
−1 +

√
1 + 2 (k − 1)

(
FnFnFn

k P A

)2

(k − 1)
(

FnFnFn

k P A

)2
(7.IX.l)

The stagnation speed of sound is

c0 =
√

k R T0 =
√

1.4× 287× 300 ∼ 347.2[m/sec]

The Fliegner number ratio to pressure and area ratio is

FnFnFn

Aexit Pexit
=

4× 347.2
0.00268482× 200000

∼ 2.59

Either using using Figure 7.6 as 0.68 (blue line) or equation (7.IX.l) provides the
solution as

Texit =

√
1 +

2× 0.4
1.42

(5.57)2 − 1

0.4
1.42

× (5.57)2
∼ 0.682
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Fig. -7.6. The ratio of the exit temperature and stagnation temperature to be used for efficiency
calculations.

Hence the exit temperature is

Texit = T0
Texit

T0
∼ 300× 0.682 ∼ 204.679K

The new efficiency is then

η =
300− 204.679
300− 127.5

= 0.552585507

End Solution



CHAPTER 8

Nozzle Flow With External Forces

This chapter is under heavy construction. Please ignore. If you want to
contribute and add any results of experiments, to this chapter, please do so.
You can help especially if you have photos showing these effects.

In the previous chapters a simple model describing the flow in nozzle was ex-
plained. In cases where more refined calculations have to carried the gravity or other
forces have to be taken into account. Flow in a vertical or horizontal nozzle are different
because the gravity. The simplified models that suggests them–self are: friction and
adiabatic, isothermal, seem the most applicable. These models can served as limiting
cases for more realistic flow.

The effects of the gravity of the nozzle flow in two models isentropic and
isothermal is analyzed here. The isothermal nozzle model is suitable in cases where
the flow is relatively slow (small Eckert numbers) while as the isentropic model is more
suitable for large Eckert numbers.

The two models produces slightly different equations. The equations results
in slightly different conditions for the choking and different choking speed. Moreover,
the working equations are also different and this author isn’t aware of material in the
literature which provides any working table for the gravity effect.
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8.1 Isentropic Nozzle (Q = 0)
The energy equation for isentropic nozzle provides

dh + UdU =

external work
or
potential
difference, i.e.
z × g︷ ︸︸ ︷

f(x)dx (8.1)

Utilizing equation (5.26) when ds = 0 leads to

dP

ρ
+ UdU = f(x′)dx′ (8.2)

For the isentropic process dP = const× kρk−1dρ when the const = P/ρk at
any point of the flow. The equation (8.2) becomes

dP︷ ︸︸ ︷
any point︷︸︸︷

P

ρk
k

ρk

ρ
dρ

1
ρ

+ UdU = k

RT︷︸︸︷
P

ρ

dρ

ρ
UdU =f(x′)dx′ (8.3)

kRTdρ

ρ
+ UdU =

c2

ρ
dρ + UdU =f(x′)dx′

The continuity equation as developed earlier (mass conservation equation isn’t
effected by the gravity)

−dρ

ρ
=

dA

A
+

dU

U
= 0 (8.4)

Substituting dρ/ρ from equation 8.3, into equation (8.2) moving dρ to the right hand
side, and diving by dx′ yields

U
dU

dx′
= c2

[
1
U

dU

dx′
+

1
A

dA

dx′

]
+ f(x′) (8.5)

Rearranging equation (8.5) yields

dU

dx′
=

[
M2 dU

dx′
+

c2

AU

dA

dx′

]
+

f(x′)
U

(8.6)

And further rearranging yields

(
1−M2

) dU

dx′
=

c2

AU

dA

dx′
+

f(x′)
U

(8.7)
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Equation (8.7) can be rearranged as

dU

dx′
=

1
(1−M2)

[
c2

AU

dA

dx′
+

f(x′)
U

]
(8.8)

Equation (8.8) dimensionless form by utilizing x = x′/` and ` is the nozzle length

dM

dx
=

1
(1−M2)


 1

AM

dA

dx
+

`f(x)
c cM︸︷︷︸

U


 (8.9)

And the final form of equation (8.9) is

d
(
M2

)

dx
=

2
(1−M2)

[
1
A

dA

dx
+

`f(x)
c2

]
Choking Flow Conditions

(8.10)

The term `f(x)
c2 is considered to be very small (0.1 × 10/100000 < 0.1%) for

“standard” situations. The dimensionless number, `f(x)
c2 sometimes referred as Ozer

number determines whether gravity should be considered in the calculations. Neverthe-
less, one should be aware of value of Ozer number for large magnetic fields (astronomy)
and low temperature, In such cases, the gravity effect can be considerable.

As it was shown before the transition must occur when M = 1. Consequently,
two zones must be treated separately. First, here the Mach number is discussed and
not the pressure as in the previous chapter. For M < 1 (the subsonic branch) the term

2
(1−M2) is positive and the treads determined by gravity and the area function.

[
1
A

dA

dx
+

`f(x)
c2

]
> 0 =⇒ d(M2) > 0

or conversely, [
1
A

dA

dx
+

`f(x)
c2

]
< 0 =⇒ d(M2) < 0

For the case of M > 1 (the supersonic branch) the term 2
(1−M2) is negative and

therefore [
1
A

dA

dx
+

`f(x)
c2

]
> 0 =⇒ d(M2) < 0

For the border case M = 1, the denominator 1 −M2 = 0, is zero either d(M2) = ∞
or [

1
A

dA

dx
+

`f(x)
c2

]
= 0.
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And the dM is indeterminate. As it was shown in chapter (5) the flow is chocked
(M = 1) only when

[
dA

dx
+

`f(x)
c2

]
= 0. (8.11)

It should be noticed that when f(x) is zero, e.g. horizontal flow, the equation
(8.11) reduced into dA

dx = 0 that was developed previously.
The ability to manipulate the location provides a mean to increase/decrease

the flow rate. Yet this ability since Ozer number is relatively very small.
This condition means that the critical point can occurs in several locations that

satisfies equation (8.11). Further, the critical point, sonic point is dA
Ax 6= 0 If f(x) is

a positive function, the critical point happen at converging part of the nozzle (before
the throat) and if f(x) is a negative function the critical point is diverging part of the
throat. For example consider the gravity, f(x) = −g a flow in a nozzle vertically the
critical point will be above the throat.

8.2 Isothermal Nozzle (T = constant)



CHAPTER 9

Isothermal Flow

In this chapter a model dealing with gas that flows through a long tube is described.
This model has a applicability to situations which occur in a relatively long distance
and where heat transfer is relatively rapid so that the temperature can be treated, for
engineering purposes, as a constant. For example, this model is applicable when a
natural gas flows over several hundreds of meters. Such situations are common in large
cities in U.S.A. where natural gas is used for heating. It is more predominant (more
applicable) in situations where the gas is pumped over a length of kilometers.

flow
direction P

T

U

}

(M)

ρ + ∆ρ

P + ∆P
c.v.ρ

�w
�w T + ∆T

U + ∆U

}

(M + ∆M)

Fig. -9.1. Control volume for isothermal flow.

The high speed of the gas is ob-
tained or explained by the combination of
heat transfer and the friction to the flow.
For a long pipe, the pressure difference re-
duces the density of the gas. For instance,
in a perfect gas, the density is inverse of
the pressure (it has to be kept in mind that
the gas undergoes an isothermal process.).
To maintain conservation of mass, the ve-
locity increases inversely to the pressure.
At critical point the velocity reaches the speed of sound at the exit and hence the flow
will be choked1.

1This explanation is not correct as it will be shown later on. Close to the critical point (about, 1/
√

k,
the heat transfer, is relatively high and the isothermal flow model is not valid anymore. Therefore,
the study of the isothermal flow above this point is only an academic discussion but also provides the
upper limit for Fanno Flow.
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9.1 The Control Volume Analysis/Governing equations
Figure (9.1) describes the flow of gas from the left to the right. The heat transfer up
stream (or down stream) is assumed to be negligible. Hence, the energy equation can
be written as the following:

dQ

ṁ
= cpdT + d

U2

2
= cpdT0 (9.1)

The momentum equation is written as the following

−AdP − τwdAwetted area = ṁdU (9.2)

where A is the cross section area (it doesn’t have to be a perfect circle; a close enough
shape is sufficient.). The shear stress is the force per area that acts on the fluid by
the tube wall. The Awetted area is the area that shear stress acts on. The second law
of thermodynamics reads

s2 − s1

Cp
= ln

T2

T1
− k − 1

k
ln

P2

P1
(9.3)

The mass conservation is reduced to

ṁ = constant = ρU A (9.4)

Again it is assumed that the gas is a perfect gas and therefore, equation of
state is expressed as the following:

P = ρ R T (9.5)

9.2 Dimensionless Representation
In this section the equations are transformed into the dimensionless form and presented
as such. First it must be recalled that the temperature is constant and therefore,
equation of state reads

dP

P
=

dρ

ρ
(9.6)

It is convenient to define a hydraulic diameter

DH =
4× Cross Section Area

wetted perimeter
(9.7)

The Fanning friction factor2 is introduced, this factor is a dimensionless friction factor
sometimes referred to as the friction coefficient as

f =
τw

1
2ρU2

(9.8)

2It should be noted that Fanning factor based on hydraulic radius, instead of diameter friction
equation, thus “Fanning f” values are only 1/4th of “Darcy f” values.
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Substituting equation (9.8) into momentum equation (9.2) yields

−dP − 4dx

DH
f

(
1
2
ρU2

)
=

ṁ
A︷︸︸︷

ρU dU (9.9)

Rearranging equation (9.9) and using the identify for perfect gas M2 = ρU2/kP yields:

−dP

P
− 4fdx

DH

(
k P M2

2

)
=

k P M2dU

U
(9.10)

The pressure, P as a function of the Mach number has to substitute along with velocity,
U as

U2 = k R TM2 (9.11)

Differentiation of equation (9.11) yields

d(U2) = k R
(
M2 dT + T d(M2)

)
(9.12)

d(M2)
M2

=
d(U2)
U2

− dT

T
(9.13)

It can be noticed that dT = 0 for isothermal process and therefore

d(M2)
M2

=
d(U2)
U2

=
2U dU

U2
=

2dU

U
(9.14)

The dimensionalization of the mass conservation equation yields

dρ

ρ
+

dU

U
=

dρ

ρ
+

2 U dU

2U2
=

dρ

ρ
+

d(U2)
2 U2

= 0 (9.15)

Differentiation of the isotropic (stagnation) relationship of the pressure (5.11) yields

dP0

P0
=

dP

P
+




k M2

2

1 +
k − 1

2
M2


 dM2

M2
(9.16)

Differentiation of equation (5.9) yields:

dT0 = dT

(
1 +

k − 1
2

M2

)
+ T

k − 1
2

dM2 (9.17)

Notice that dT0 6= 0 in an isothermal flow. There is no change in the actual
temperature of the flow but the stagnation temperature increases or decreases depending
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on the Mach number (supersonic flow of subsonic flow). Substituting T for equation
(9.17) yields:

dT0 =
T0

k − 1
2

dM2

(
1 +

k − 1
2

M2

) M2

M2
(9.18)

Rearranging equation (9.18) yields

dT0

T0
=

(k − 1) M2

2
(

1 +
k − 1

2

) dM2

M2
(9.19)

By utilizing the momentum equation it is possible to obtain a relation between
the pressure and density. Recalling that an isothermal flow (dT = 0) and combining it
with perfect gas model yields

dP

P
=

dρ

ρ
(9.20)

From the continuity equation (see equation (9.14)) leads

dM2

M2
=

2dU

U
(9.21)

The four equations momentum, continuity (mass), energy, state are described
above. There are 4 unknowns (M, T, P, ρ)3 and with these four equations the solution is
attainable. One can notice that there are two possible solutions (because of the square
power). These different solutions are supersonic and subsonic solution.

The distance friction, 4 f L
D , is selected as the choice for the independent vari-

able. Thus, the equations need to be obtained as a function of 4f L
D . The density is

eliminated from equation (9.15) when combined with equation (9.20) to become

dP

P
= −dU

U
(9.22)

After substituting the velocity (9.22) into equation (9.10), one can obtain

−dP

P
− 4fdx

DH

(
k P M2

2

)
= k P M2 dP

P
(9.23)

Equation (9.23) can be rearranged into

dP

P
=

dρ

ρ
= −dU

U
= −1

2
dM2

M2
= − k M2

2 (1− k M2)
4 f

dx

D
(9.24)

3Assuming the upstream variables are known.
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Similarly or by other paths, the stagnation pressure can be expressed as a function of
4 f L

D

dP0

P0
=

k M2

(
1− k + 1

2
M2

)

2 (k M2 − 1)
(

1 +
k − 1

2
M2

)4 f
dx

D
(9.25)

dT0

T0
=

k (1− k)M2

2 (1− k M2)
(

1 +
k − 1

2
M2

) 4 f
dx

D
(9.26)

The variables in equation (9.24) can be separated to obtain integrable form as follows

∫ L

0

4fdx

D
=

∫ 1/k

M2

1− k M2
k M2

dM2 (9.27)

It can be noticed that at the entrance (x = 0) for which M = Mx=0 (the initial velocity
in the tube isn’t zero). The term 4f L

D is positive for any x, thus, the term on the other
side has to be positive as well. To obtain this restriction 1 = k M2. Thus, the value
M = 1√

k
is the limiting case from a mathematical point of view. When Mach number

larger than M > 1√
k

it makes the right hand side of the integrate negative. The physical

meaning of this value is similar to M = 1 choked flow which was discussed in a variable
area flow in Chapter (5).

Further it can be noticed from equation (9.26) that when M → 1√
k

the value

of right hand side approaches infinity (∞). Since the stagnation temperature (T0) has
a finite value which means that dT0 →∞. Heat transfer has a limited value therefore
the model of the flow must be changed. A more appropriate model is an adiabatic flow
model yet this model can serve as a bounding boundary (or limit).

Integration of equation (9.27) requires information about the relationship be-
tween the length, x, and friction factor f . The friction is a function of the Reynolds
number along the tube. Knowing the Reynolds number variations is important. The
Reynolds number is defined as

Re =
D U ρ

µ
(9.28)

The quantity U ρ is constant along the tube (mass conservation) under constant area.
Thus, only viscosity is varied along the tube. However under the assumption of ideal
gas, viscosity is only a function of the temperature. The temperature in isothermal
process (the definition) is constant and thus the viscosity is constant. In real gas, the
pressure effects are very minimal as described in “Basic of fluid mechanics” by this
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author. Thus, the friction factor can be integrated to yield

4 f L

D

∣∣∣∣
max

=
1− k M2

k M2
+ ln

(
k M2

)
Friction Mach

(9.29)

The definition for perfect gas yields M2 = U2/k R T and noticing that T =
constant is used to describe the relation of the properties at M = 1/

√
k. By denoting

the superscript symbol ∗ for the choking condition, one can obtain that

M2

U2
=

1/k

U∗2 (9.30)

Rearranging equation (9.30) is transformed into

U

U∗ =
√

kM (9.31)

Utilizing the continuity equation provides

ρU = ρ∗U∗; =⇒ ρ

ρ∗
=

1√
k M

(9.32)

Reusing the perfect–gas relationship

P

P ∗
=

ρ

ρ∗
=

1√
k M

Pressure Ratio

(9.33)

Utilizing the relation for stagnated isotropic pressure one can obtain

P0

P ∗0
=

P

P ∗

[
1 + k−1

2 M2

1 + k−1
2k

] k
k−1

(9.34)

Substituting for P
P∗ equation (9.33) and rearranging yields

P0

P ∗0
=

1√
k

(
2 k

3 k − 1

) k
k−1

(
1 +

k − 1
2

M2

) k
k−1 1

M

Stagnation Pressure Ratio

(9.35)

And the stagnation temperature at the critical point can be expressed as

T0

T ∗0
=

T

T ∗
1 +

k − 1
2

M2

1 +
k − 1
2 k

=
2 k

3k − 1

(
1 +

k − 1
2

)
M2

Stagnation Pressure Ratio

(9.36)

These equations (9.31)-(9.36) are presented on in Figure (9.2).
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Fig. -9.2. Description of the pressure, temperature relationships as a function of the Mach
number for isothermal flow.

9.3 The Entrance Limitation of Supersonic Branch

Situations where the conditions at the tube exit have not arrived at the critical conditions
are discussed here. It is very useful to obtain the relationships between the entrance
and the exit conditions for this case. Denote 1 and 2 as the conditions at the inlet and
exit respectably. From equation (9.24)

4 f L

D
=

4 f L

D

∣∣∣∣
max1

− 4 f L

D

∣∣∣∣
max2

=
1− k M1

2

k M1
2 − 1− k M2

2

k M2
2 + ln

(
M1

M2

)2

(9.37)

For the case that M1 >> M2 and M1 → 1 equation (9.37) is reduced into the following
approximation

4 f L

D
= 2 ln (M1)− 1−

∼0︷ ︸︸ ︷
1− k M2

2

kM2
2 (9.38)

Solving for M1 results in

M1 ∼ e
1
2

„
4 f L

D +1

«

(9.39)
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This relationship shows the maximum limit that Mach number can approach when the
heat transfer is extraordinarily fast. In reality, even small 4 f L

D > 2 results in a Mach
number which is larger than 4.5. This velocity requires a large entrance length to achieve
good heat transfer. With this conflicting mechanism obviously the flow is closer to the
Fanno flow model. Yet this model provides the directions of the heat transfer effects
on the flow.

Example 9.1:

Calculate the exit Mach number for pipe with
4 f L

D
= 3 under the assumption of the

isothermal flow and supersonic flow. Estimate the heat transfer needed to achieve this
flow.

9.4 Comparison with Incompressible Flow
The Mach number of the flow in some instances is relatively small. In these cases,
one should expect that the isothermal flow should have similar characteristics as incom-
pressible flow. For incompressible flow, the pressure loss is expressed as follows

P1 − P2 =
4 f L

D

U2

2
(9.40)

Now note that for incompressible flow U1 = U2 = U and 4 f L
D represent the ratio of

the traditional h12. To obtain a similar expression for isothermal flow, a relationship
between M2 and M1 and pressures has to be derived. From equation (9.40) one can
obtained that

M2 = M1
P1

P2
(9.41)

Substituting this expression into (9.41) yields

4 f L

D
=

1
k M1

2

(
1−

(
P2

P1

)2
)
− ln

(
P2

P1

)2

(9.42)

Because f is always positive there is only one solution to the above equation even
though M2.

Expanding the solution for small pressure ratio drop, P1 − P2/P1, by some
mathematics. Denote

χ =
P1 − P2

P1
(9.43)

Now equation (9.42) can be transformed into

4 f L

D
=

1
k M1

2

(
1−

(
P2 − P1 + P1

P1

)2
)
− ln

(
1
P2
P1

)2

(9.44)
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4 f L

D
=

1
k M1

2

(
1− (1− χ)2

)
− ln

(
1

1− χ

)2

(9.45)

4 f L

D
=

1
kM1

2

(
2χ− χ2

)− ln
(

1
1− χ

)2

(9.46)

now we have to expand into a series around χ = 0 and remember that

f(x) = f(0) + f ′(0)x + f ′′(0)
x2

2
+ 0

(
x3

)
(9.47)

and for example the first derivative of

d

dχ
ln

(
1

1− χ

)2
∣∣∣∣∣
χ=0

=

(1− χ)2 × [
(−2)(1− χ)−3

]
(−1)

∣∣∣
χ=0

= 2 (9.48)

similarly it can be shown that f ′′(χ = 0) = 1 equation (9.46) now can be
approximated as

4 f L

D
=

1
kM1

2 (2χ− χ2)− (
2χ− χ2

)
+ f

(
χ3

)
(9.49)

rearranging equation (9.49) yields

4 f L

D
=

χ

kM1
2

[
(2− χ)− kM1

2 (2− χ)
]
+ f

(
χ3

)
(9.50)

and further rearrangement yields

4 f L

D
=

χ

kM1
2

[
2(1− kM1

2)− (
1 + kM1

2
)
χ
]
+ f

(
χ3

)
(9.51)

in cases that χ is small

4 f L

D
≈ χ

k M1
2

[
2(1− k M1

2)− (
1 + k M1

2
)
χ
]

(9.52)

The pressure difference can be plotted as a function of the M1 for given value
of 4 f L

D . Equation (9.52) can be solved explicitly to produce a solution for

χ =
1− k M1

2

1 + k M1
2 −

√
1− k M1

2

1 + k M1
2 −

k M1
2

1 + k M1
2

4 f L

D
(9.53)

A few observations can be made about equation (9.53).
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9.5 Supersonic Branch
Apparently, this analysis/model is over simplified for the supersonic branch and does
not produce reasonable results since it neglects to take into account the heat transfer
effects. A dimensionless analysis4 demonstrates that all the common materials that the
author is familiar which creates a large error in the fundamental assumption of the model
and the model breaks. Nevertheless, this model can provide a better understanding to
the trends and deviations from Fanno flow model.

In the supersonic flow, the hydraulic entry length is very large as will be shown
below. However, the feeding diverging nozzle somewhat reduces the required entry
length (as opposed to converging feeding). The thermal entry length is in the order
of the hydrodynamic entry length (look at the Prandtl number5 , (0.7-1.0), value for
the common gases.). Most of the heat transfer is hampered in the sublayer thus the
core assumption of isothermal flow (not enough heat transfer so the temperature isn’t
constant) breaks down6.

The flow speed at the entrance is very large, over hundred of meters per second.
For example, a gas flows in a tube with 4 f L

D = 10 the required entry Mach number
is over 200. Almost all the perfect gas model substances dealt with in this book, the
speed of sound is a function of temperature. For this illustration, for most gas cases
the speed of sound is about 300[m/sec]. For example, even with low temperature like
200K the speed of sound of air is 283[m/sec]. So, even for relatively small tubes with
4 f D

D = 10 the inlet speed is over 56 [km/sec]. This requires that the entrance length
to be larger than the actual length of the tub for air. Remember from “Basics of Fluid
Mechanics”7

Lentrance = 0.06
U D

ν
(9.54)

The typical values of the the kinetic viscosity, ν, are 0.0000185 kg/m-sec at 300K and
0.0000130034 kg/m-sec at 200K. Combine this information with our case of 4 f L

D = 10

Lentrance

D
= 250746268.7

On the other hand a typical value of friction coefficient f = 0.005 results in

Lmax

D
=

10
4× 0.005

= 500

The fact that the actual tube length is only less than 1% of the entry length means that
the assumption is that the isothermal flow also breaks (as in a large response time). If
Mach number is changing from 10 to 1 the kinetic energy change is about T0

T0
∗ = 18.37

which means that the maximum amount of energy is insufficient.

4This dimensional analysis is a bit tricky, and is based on estimates. Currently and ashamedly the
author is looking for a more simplified explanation. The current explanation is correct but based on
hands waving and definitely does not satisfy the author.

5 is relating thermal boundary layer to the momentum boundary layer.
6See Kays and Crawford “Convective Heat Transfer” (equation 12-12).
7Basics of Fluid Mechanics, Bar-Meir, Genick, Potto Project, 2013
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Now with limitation, this topic will be covered in the next version because it
provide some insight and boundary to the Fanno Flow model.

9.6 Figures and Tables

Table -9.1. The Isothermal Flow basic parameters

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

T0

T0
∗

0.03000 785.97 28.1718 17.6651 28.1718 0.87516

0.04000 439.33 21.1289 13.2553 21.1289 0.87528

0.05000 279.06 16.9031 10.6109 16.9031 0.87544

0.06000 192.12 14.0859 8.8493 14.0859 0.87563

0.07000 139.79 12.0736 7.5920 12.0736 0.87586

0.08000 105.89 10.5644 6.6500 10.5644 0.87612

0.09000 82.7040 9.3906 5.9181 9.3906 0.87642

0.10000 66.1599 8.4515 5.3334 8.4515 0.87675

0.20000 13.9747 4.2258 2.7230 4.2258 0.88200

0.25000 7.9925 3.3806 2.2126 3.3806 0.88594

0.30000 4.8650 2.8172 1.8791 2.8172 0.89075

0.35000 3.0677 2.4147 1.6470 2.4147 0.89644

0.40000 1.9682 2.1129 1.4784 2.1129 0.90300

0.45000 1.2668 1.8781 1.3524 1.8781 0.91044

0.50000 0.80732 1.6903 1.2565 1.6903 0.91875

0.55000 0.50207 1.5366 1.1827 1.5366 0.92794

0.60000 0.29895 1.4086 1.1259 1.4086 0.93800

0.65000 0.16552 1.3002 1.0823 1.3002 0.94894

0.70000 0.08085 1.2074 1.0495 1.2074 0.96075

0.75000 0.03095 1.1269 1.0255 1.1269 0.97344

0.80000 0.00626 1.056 1.009 1.056 0.98700

0.81000 0.00371 1.043 1.007 1.043 0.98982
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Table -9.1. The Isothermal Flow basic parameters (continue)

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

T0

T0
∗

0.81879 0.00205 1.032 1.005 1.032 0.99232

0.82758 0.000896 1.021 1.003 1.021 0.99485

0.83637 0.000220 1.011 1.001 1.011 0.99741

0.84515 0.0 1.000 1.000 1.000 1.000

9.7 Isothermal Flow Examples

There can be several kinds of questions aside from the proof questions8. Generally,
the “engineering” or practical questions can be divided into driving force (pressure
difference), resistance (diameter, friction factor, friction coefficient, etc.), and mass
flow rate questions. In this model no questions about shock (should) exist9.

The driving force questions deal with what should be the pressure difference to
obtain certain flow rate. Here is an example.

Example 9.2:
A tube of 0.25 [m] diameter and 5000 [m] in length is attached to a pump. What
should be the pump pressure so that a flow rate of 2 [kg/sec] will be achieved? Assume
that friction factor f = 0.005 and the exit pressure is 1[bar]. The specific heat for the

gas, k = 1.31, surroundings temperature 27◦C, R = 290
[

J
Kkg

]
. Hint: calculate the

maximum flow rate and then check if this request is reasonable.

Solution

If the flow was incompressible then for known density, ρ, the velocity can be calculated

by utilizing ∆P = 4 f ÃL
D

U2

2g . In incompressible flow, the density is a function of the

entrance Mach number. The exit Mach number is not necessarily 1/
√

k i.e. the flow is
not choked. First, check whether flow is choked (or even possible).

Calculating the resistance, 4 f L
D

4 f L

D
=

4× 0.0055000
0.25

= 400

Utilizing Table (9.1) or the Potto–GDC provides

8The proof questions are questions that ask for proof or for finding a mathematical identity (normally
good for mathematicians and study of perturbation methods). These questions or examples will appear
in the later versions.

9Those who are mathematically inclined can include these kinds of questions but there are no real
world applications to isothermal model with shock.
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M 4 f l
D

P
P∗

P0

P0
∗

ρ
ρ∗

T0

T0
∗

0.04331 400.00 20.1743 12.5921 0.0 0.89446

The maximum flow rate (the limiting case) can be calculated by utilizing the above
table. The velocity of the gas at the entrance U = cM = 0.04331×√1.31× 290× 300 ∼=
14.62

[
m
sec

]
. The density reads

ρ =
P

RT
=

2, 017, 450
290× 300

∼= 23.19
[

kg

m3

]

The maximum flow rate then reads

ṁ = ρAU = 23.19× π × (0.25)2

4
× 14.62 ∼= 16.9

[
kg

sec

]

The maximum flow rate is larger then the requested mass rate hence the flow is not
choked. It is note worthy to mention that since the isothermal model breaks around
the choking point, the flow rate is really some what different. It is more appropriate to
assume an isothermal model hence our model is appropriate.

To solve this problem the flow rate has to be calculated as

ṁ = ρAU = 2.0
[

kg

sec

]

ṁ =
P1

RT
A

kU

k
=

P1√
kRT

A
kU√
kRT

=
P1

c
AkM1

Now combining with equation (9.41) yields

ṁ =
M2P2Ak

c

M2 =
ṁc

P2Ak
=

2× 337.59

100000× π×(0.25)2

4 × 1.31
= 0.103

From Table (9.1) or by utilizing the Potto–GDC one can obtain

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

T0

T0
∗

0.10300 66.6779 8.4826 5.3249 0.0 0.89567

The entrance Mach number is obtained by

4 f L

D

∣∣∣∣
1

= 66.6779 + 400 ∼= 466.68

Hence,



238 CHAPTER 9. ISOTHERMAL FLOW

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

T0

T0
∗

0.04014 466.68 21.7678 13.5844 0.0 0.89442

The pressure should be

P = 21.76780× 8.4826 = 2.566[bar]

Note that tables in this example are for k = 1.31
End Solution

Example 9.3:
A flow of gas was considered for a distance of 0.5 [km] (500 [m]). A flow rate of 0.2
[kg/sec] is required. Due to safety concerns, the maximum pressure allowed for the gas
is only 10[bar]. Assume that the flow is isothermal and k=1.4, calculate the required
diameter of tube. The friction coefficient for the tube can be assumed as 0.02 (A
relative smooth tube of cast iron.). Note that tubes are provided in increments of 0.5
[in]10. You can assume that the soundings temperature to be 27◦C.

Solution

At first, the minimum diameter will be obtained when the flow is choked. Thus, the
maximum M1 that can be obtained when the M2 is at its maximum and back pressure
is at the atmospheric pressure.

M1 = M2
P2

P1
=

Mmax︷︸︸︷
1√
k

1
10

= 0.0845

Now, with the value of M1 either by utilizing Table (9.1) or using the provided program
yields

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

T0

T0
∗

0.08450 94.4310 10.0018 6.2991 0.0 0.87625

With
4 f L

D

∣∣∣∣
max

= 94.431, the value of minimum diameter.

D =
4fL

4 f L
D

∣∣∣
max

' 4× 0.02× 500
94.43

' 0.42359[m] = 16.68[in]

10It is unfortunate, but it seems that this standard will be around in USA for some time.
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However, the pipes are provided only in 0.5 increments and the next size is 17[in]
or 0.4318[m]. With this pipe size the calculations are to be repeated in reverse and
produces: (Clearly the maximum mass is determined with)

ṁ = ρAU = ρAMc =
P

R T
AM

√
k R T =

P A M
√

k√
R T

The usage of the above equation clearly applied to the whole pipe. The only point that
must be emphasized is that all properties (like Mach number, pressure and etc) have
to be taken at the same point. The new 4 f L

D is

4 f L

D
=

4× 0.02× 500
0.4318

' 92.64

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

T0

T0
∗

0.08527 92.6400 9.9110 6.2424 0.0 0.87627

To check whether the flow rate satisfies the requirement

ṁ =
106 × π×0.43182

4 × 0.0853×√1.4√
287× 300

≈ 50.3[kg/sec]

Since 50.3 ≥ 0.2 the mass flow rate requirement is satisfied.
It should be noted that P should be replaced by P0 in the calculations. The speed

of sound at the entrance is

c =
√

k R T =
√

1.4× 287× 300 ∼= 347.2
[ m

sec

]

and the density is

ρ =
P

RT
=

1, 000, 000
287× 300

= 11.61
[

kg

m3

]

The velocity at the entrance should be

U = M ∗ c = 0.08528× 347.2 ∼= 29.6
[ m

sec

]

The diameter should be

D =

√
4ṁ

πUρ
=

√
4× 0.2

π × 29.6× 11.61
∼= 0.027

Nevertheless, for the sake of the exercise the other parameters will be calculated. This
situation is reversed question. The flow rate is given with the diameter of the pipe. It
should be noted that the flow isn’t choked.

End Solution
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Example 9.4:
A gas flows of from a station (a) with pressure of 20[bar] through a pipe with 0.4[m]
diameter and 4000 [m] length to a different station (b). The pressure at the exit (station
(b)) is 2[bar]. The gas and the sounding temperature can be assumed to be 300 K.
Assume that the flow is isothermal, k=1.4, and the average friction f=0.01. Calculate
the Mach number at the entrance to pipe and the flow rate.

Solution

First, the information whether the flow is choked needs to be found. Therefore, at first
it will be assumed that the whole length is the maximum length.

4 f L

D

∣∣∣∣
max

=
4× 0.01× 4000

0.4
= 400

with 4 f L
D

∣∣∣
max

= 400 the following can be written

M 4 f L
D

T0

T0
∗T

ρ
ρ∗T

P
P∗T

P0

P0
∗T

0.0419 400.72021 0.87531 20.19235 20.19235 12.66915

From the table M1 ≈ 0.0419 ,and P0
P0
∗T ≈ 12.67

P0
∗T ∼= 28

12.67
' 2.21[bar]

The pressure at point (b) by utilizing the isentropic relationship (M = 1) pressure ratio
is 0.52828.

P2 =
P0
∗T

(
P2

P0
∗T

) = 2.21× 0.52828 = 1.17[bar]

As the pressure at point (b) is smaller than the actual pressure P ∗ < P2 than the actual
pressure one must conclude that the flow is not choked. The solution is an iterative
process.

1. guess reasonable value of M1 and calculate 4 f L
D

2. Calculate the value of 4 f L
D

∣∣∣
2

by subtracting 4 f L
D

∣∣∣
1
− 4 f L

D

3. Obtain M2 from the Table ? or by using the Potto–GDC.

4.
Calculate the pressure, P2 bear in mind that this isn’t the real pressure but based
on the assumption.
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5.
Compare the results of guessed pressure P2 with the actual pressure and choose
new Mach number M1 accordingly.

The process has been done and is provided in Figure or in a table obtained from Potto–
GDC.

M1 M2
4 f L
D

∣∣
max

∣∣
1

4 f L
D

P2

P1

0.0419 0.59338 400.32131 400.00000 0.10000

The flow rate is

ṁ = ρAMc =
P
√

k√
RT

π ×D2

4
M =

2000000
√

1.4√
300× 287

π × 0.22 × 0.0419

' 42.46[kg/sec]

End Solution

In this chapter, there are no examples on isothermal with supersonic flow.

9.8 Unchoked Situations in Fanno Flow

Table -9.2. The flow parameters for unchoked flow

M1 M2
4 f L
D

∣∣
max

∣∣
1

4 f L
D

P2

P1

0.7272 0.84095 0.05005 0.05000 0.10000

0.6934 0.83997 0.08978 0.08971 0.10000

0.6684 0.84018 0.12949 0.12942 0.10000

0.6483 0.83920 0.16922 0.16912 0.10000

0.5914 0.83889 0.32807 0.32795 0.10000

0.5807 0.83827 0.36780 0.36766 0.10000

0.5708 0.83740 0.40754 0.40737 0.10000

9.8.1 Reynolds Number Effect

One of the interesting feature of the isothermal flow is that Reynolds number remains
constant during the flow for an ideal gas material (enthalpy is a function of only the
temperature). This fact simplifies the calculation of the friction factor. This topic has
more discussion on the web than on “scientific” literature. Here is a theoretical example
for such calculation that was discussed on the web.
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Fig. -9.3. The Mach number at the entrance to a tube under isothermal flow model as a
function 4 f L

D
.

Example 9.5:
Air flows in a tube with 0.1[m] diameter and 100[m] in length. The relative roughness,
ε/D = 0.001 and the entrance pressure is P1 = 20[Bar] and the exit pressure is
P1 = 1[Bar] . The surroundings temperature is 27◦C. Estimate whether the flow is
laminar or turbulent, estimate the friction factor, the entrance and exit Mach numbers
and the flow rate.

Solution

The first complication is the know what is flow regimes. The process is to assume that
the flow is turbulent (long pipe). In this case, for large Reynolds number the friction
factor is about 0.005. Now the iterative procedure as following;

Calculate the 4fL
D .

4fL
D =

4× 0.005× 100
0.1

= 20

The flow is choked for this value and the given pressure ratio. Thus,
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M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

T0

T0
∗

0.17185 20.0000 4.9179 3.1460 4.9179 0.88017

For this iteration the viscosity of the air is taken from the Basics of Fluid Mechanics by
this author and the Reynolds number can be calculated as

Re =
D U ρ

µ
=

0.1× 0.17185×√1.4× 287× 300× 200000
287× 300

0.0008
∼ 17159.15

For this Reynolds number the fiction factor can be estimated by using the full
Colebrook’s equation

1√
f

= −2 log10

(
ε/Dh

3.7
+

2.51
Re
√

f

)
(9.55)

or the approximated Haaland’s equation

1√
f

= −1.8 log10

[(
ε/D

3.7

)1.11

+
6.9
Re

]
(9.56)

which provide f = 0.0053 and it is a reasonable answer in one iteration. Repeating the
iteration results in

4fL
D =

4× 0.0053× 100
0.1

= 21.2

with

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

T0

T0
∗

0.16689 21.4000 5.0640 3.2357 5.0640 0.87987

And the “improved” Reynolds number is

Re =
0.1× 0.16689×√1.4× 287× 300× 200000

287× 300
0.0008

∼ 16669.6

And the friction number is .0054 which very good estimate compare with the assumption
that this model was built on.

End Solution
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CHAPTER 10

Fanno Flow

flow
direction P

T

U

}

(M)

ρ + ∆ρ

P + ∆P

c.v.

ρ

�w
�w

No heat transer

T + ∆T

U + ∆U

}

(M + ∆M)

Fig. -10.1. Control volume of the gas flow in a
constant cross section.

An adiabatic flow with friction is named af-
ter Ginno Fanno a Jewish engineer. This
model is the second pipe flow model de-
scribed here. The main restriction for this
model is that heat transfer is negligible and
can be ignored 1. This model is applicable
to flow processes which are very fast com-
pared to heat transfer mechanisms with
small Eckert number.

This model explains many indus-
trial flow processes which includes empty-
ing of pressured container through a relatively short tube, exhaust system of an internal
combustion engine, compressed air systems, etc. As this model raised from the need to
explain the steam flow in turbines.

10.1 Introduction

Consider a gas flowing through a conduit with a friction (see Figure (10.1)). It is
advantages to examine the simplest situation and yet without losing the core properties
of the process. Later, more general cases will be examined2.

1Even the friction does not convert into heat
2Not ready yet, discussed on the ideal gas model and the entry length issues.

245
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10.2 Fanno Model
The mass (continuity equation) balance can be written as

ṁ = ρA U = constant

↪→ ρ1 U1 = ρ2 U2

(10.1)

The energy conservation (under the assumption that this model is adiabatic
flow and the friction is not transformed into thermal energy) reads

T01 = T02

↪→ T1 +
U1

2

2 cp
= T2 +

U2
2

2 cp

(10.2)

Or in a derivative from

Cp dT + d

(
U2

2

)
= 0 (10.3)

Again for simplicity, the perfect gas model is assumed3.

P = ρRT

↪→ P1

ρ1 T1
=

P2

ρ2 T2

(10.4)

It is assumed that the flow can be approximated as one–dimensional. The force
acting on the gas is the friction at the wall and the momentum conservation reads

−A dP − τwdAw = ṁdU (10.5)

It is convenient to define a hydraulic diameter as

DH =
4× Cross Section Area

wetted perimeter
(10.6)

Or in other words

A =
πDH

2

4
(10.7)

It is convenient to substitute D for DH and yet it still will be referred to the same name
as the hydraulic diameter. The infinitesimal area that shear stress is acting on is

dAw = πDdx (10.8)

3The equation of state is written again here so that all the relevant equations can be found when
this chapter is printed separately.
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Introducing the Fanning friction factor as a dimensionless friction factor which is some
times referred to as the friction coefficient and reads as the following:

f =
τw

1
2 ρU2

(10.9)

By utilizing equation (10.1) and substituting equation (10.9) into momentum equation
(10.5) yields

−

A︷ ︸︸ ︷
π D2

4
dP − π D dx

τw︷ ︸︸ ︷
f

(
1
2

ρU2

)
= A

ṁ
A︷︸︸︷

ρU dU (10.10)

Dividing equation (10.10) by the cross section area, A and rearranging yields

−dP +
4 f dx

D

(
1
2

ρU2

)
= ρU dU (10.11)

The second law is the last equation to be utilized to determine the flow direction.

s2 ≥ s1 (10.12)

10.3 Non–Dimensionalization of the Equations
Before solving the above equation a dimensionless process is applied. By utilizing the
definition of the sound speed to produce the following identities for perfect gas

M2 =
(

U

c

)2

=
U2

k R T︸︷︷︸
P
ρ

(10.13)

Utilizing the definition of the perfect gas results in

M2 =
ρU2

k P
(10.14)

Using the identity in equation (10.13) and substituting it into equation (10.10) and
after some rearrangement yields

−dP +
4 f dx

DH

(
1
2

k P M2

)
=

ρU2

U
dU =

ρU2

︷ ︸︸ ︷
k P M2 dU

U
(10.15)

By further rearranging equation (10.15) results in

−dP

P
− 4 f dx

D

(
k M2

2

)
= k M2 dU

U
(10.16)
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It is convenient to relate expressions of (dP/P ) and dU/U in terms of the Mach number
and substituting it into equation (10.16). Derivative of mass conservation (10.1) results
in

dρ

ρ
+

dU
U︷ ︸︸ ︷

1
2

dU2

U2
= 0 (10.17)

Differentiating of the equation of state (10.4) and dividing the results by equation of
state (10.4) results

dP

P
=

dρ

ρ
+

dT

dT
(10.18)

Derivation of the Mach identity equation (10.13) and dividing by equation (10.13) yields

d(M2)
M2

=
d(U2)
U2

− dT

T
(10.19)

Dividing the energy equation (10.3) by Cp and by utilizing the definition Mach number
yields

dT

T
+

1(
k R

(k − 1)

)

︸ ︷︷ ︸
Cp

1
T

U2

U2
d

(
U2

2

)
=

↪→ dT

T
+

(k − 1)
k R T︸ ︷︷ ︸

c2

U2

U2
d

(
U2

2

)
=

↪→ dT

T
+

k − 1
2

M2 dU2

U2
= 0

(10.20)

Equations (10.16), (10.17), (10.18), (10.19), and (10.20) need to be solved. These
equations are separable so one variable is a function of only single variable (the chosen
as the independent variable). Explicit explanation is provided for only two variables,
the rest variables can be done in a similar fashion. The dimensionless friction, 4 f L

D ,
is chosen as the independent variable since the change in the dimensionless resistance,
4 f L

D , causes the change in the other variables.
Combining equations (10.18) and (10.20) when eliminating dT/T results

dP

P
=

dρ

ρ
− (k − 1)M2

2
dU2

U2
(10.21)

The term dρ
ρ can be eliminated by utilizing equation (10.17) and substituting it into

equation (10.21) and rearrangement yields

dP

P
= −1 + (k − 1)M2

2
dU2

U2
(10.22)



10.3. NON–DIMENSIONALIZATION OF THE EQUATIONS 249

The term dU2/U2 can be eliminated by using (10.22)

dP

P
= −k M2

(
1 + (k − 1)M2

)

2 (1−M2)
4 f dx

D
(10.23)

The second equation for Mach number, M variable is obtained by combining equation
(10.19) and (10.20) by eliminating dT/T . Then dρ/ρ and U are eliminated by utilizing
equation (10.17) and equation (10.21). The only variable that is left is P (or dP/P )
which can be eliminated by utilizing equation (10.23) and results in

4 f dx

D
=

(
1−M2

)
dM2

k M4(1 +
k − 1

2
M2)

(10.24)

Rearranging equation (10.24) results in

dM2

M2
=

k M2

(
1 +

k − 1
2

M2

)

1−M2

4 f dx

D
(10.25)

After similar mathematical manipulation one can get the relationship for the
velocity to read

dU

U
=

k M2

2 (1−M2)
4 f dx

D
(10.26)

and the relationship for the temperature is

dT

T
=

1
2

dc

c
= −k (k − 1)M4

2 (1−M2)
4 f dx

D
(10.27)

density is obtained by utilizing equations (10.26) and (10.17) to obtain

dρ

ρ
= − k M2

2 (1−M2)
4 f dx

D
(10.28)

The stagnation pressure is similarly obtained as

dP0

P0
= −k M2

2
4 f dx

D
(10.29)

The second law reads

ds = Cp ln
(

dT

T

)
−R ln

(
dP

P

)
(10.30)

The stagnation temperature expresses as T0 = T (1 + (1− k)/2M2). Taking derivative
of this expression when M remains constant yields dT0 = dT (1 + (1 − k)/2M2) and
thus when these equations are divided they yield

dT/T = dT0/T0 (10.31)
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In similar fashion the relationship between the stagnation pressure and the pressure can
be substituted into the entropy equation and result in

ds = Cp ln
(

dT0

T0

)
−R ln

(
dP0

P0

)
(10.32)

The first law requires that the stagnation temperature remains constant, (dT0 = 0).
Therefore the entropy change is

ds

Cp
= − (k − 1)

k

dP0

P0
(10.33)

Using the equation for stagnation pressure the entropy equation yields

ds

Cp
=

(k − 1)M2

2
4 f dx

D
(10.34)

10.4 The Mechanics and Why the Flow is Choked?
The trends of the properties can be examined by looking in equations (10.23) through
(10.33). For example, from equation (10.23) it can be observed that the critical point
is when M = 1. When M < 1 the pressure decreases downstream as can be seen
from equation (10.23) because fdx and M are positive. For the same reasons, in
the supersonic branch, M > 1, the pressure increases downstream. This pressure
increase is what makes compressible flow so different from “conventional” flow. Thus
the discussion will be divided into two cases: One, flow above speed of sound. Two,
flow with speed below the speed of sound.

Why the flow is choked?

Here, the explanation is based on the equations developed earlier and there is no known
explanation that is based on the physics. First, it has to be recognized that the critical
point is when M = 1. It will be shown that a change in location relative to this point
change the trend and it is singular point by itself. For example, dP (@M = 1) = ∞ and
mathematically it is a singular point (see equation (10.23)). Observing from equation
(10.23) that increase or decrease from subsonic just below one M = (1 − ε) to above
just above one M = (1 + ε) requires a change in a sign pressure direction. However,
the pressure has to be a monotonic function which means that flow cannot crosses over
the point of M = 1. This constrain means that because the flow cannot “crossover”
M = 1 the gas has to reach to this speed, M = 1 at the last point. This situation is
called choked flow.

The Trends

The trends or whether the variables are increasing or decreasing can be observed from
looking at the equation developed. For example, the pressure can be examined by look-
ing at equation (10.25). It demonstrates that the Mach number increases downstream
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when the flow is subsonic. On the other hand, when the flow is supersonic, the pressure
decreases.

The summary of the properties changes on the sides of the branch

Subsonic Supersonic

Pressure, P decrease increase

Mach number, M increase decrease

Velocity, U increase decrease

Temperature, T decrease increase

Density, ρ decrease increase

10.5 The Working Equations
Integration of equation (10.24) yields

4
D

∫ Lmax

L

fdx =
1
k

1−M2

M2
+

k + 1
2k

ln
k+1
2 M2

1 + k−1
2 M2

Fanno FLD–M

(10.35)

A representative friction factor is defined as

f̄ =
1

Lmax

∫ Lmax

0

fdx (10.36)

In the isothermal flow model it was shown that friction factor is constant through the
process if the fluid is ideal gas. Here, the Reynolds number defined in equation (9.28) is
not constant because the temperature is not constant. The viscosity even for ideal gas
is complex function of the temperature (further reading in “Basic of Fluid Mechanics”
chapter one, Potto Project). However, the temperature variation is very limited. Simple
improvement can be done by assuming constant constant viscosity (constant friction
factor) and find the temperature on the two sides of the tube to improve the friction
factor for the next iteration. The maximum error can be estimated by looking at the
maximum change of the temperature. The temperature can be reduced by less than
20% for most range of the specific heats ratio. The viscosity change for this change is
for many gases about 10%. For these gases the maximum increase of average Reynolds
number is only 5%. What this change in Reynolds number does to friction factor? That
depend in the range of Reynolds number. For Reynolds number larger than 10,000 the
change in friction factor can be considered negligible. For the other extreme, laminar
flow it can estimated that change of 5% in Reynolds number change about the same
amount in friction factor. With the exception of the jump from a laminar flow to
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a turbulent flow, the change is noticeable but very small. In the light of the about
discussion the friction factor is assumed to constant. By utilizing the mean average
theorem equation (10.35) yields

4 f Lmax

D
=

1
k

(
1−M2

M2

)
+

k + 1
2k

ln




k + 1
2

M2

1 +
k − 1

2
M2




Resistance Mach Relationship

(10.37)

It is common to replace the f̄ with f which is adopted in this book.

Advance material can be skipped

For a very long pipe the value of the 4 f L
D is large but the value the Mach number

is very small. Hence equation (10.37) can be simplified for that case as following. The
term change as (1−M2)/M2 ∼ 1/M2 and term in the parentheses after the ln in the
parentheses is k+1

2 M2. Thus equation can be written for small Mach number as

4 f Lmax

D
=

1
k

1
M2

+
k + 1
2 k

ln
(

k + 1
2

M2

)
(10.38)

Taylor series centered at 1 is

ln(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
· · ·

This series does not converge very quickly and a mathematical trick is used where
defining new variable η as

η =
(x− 1)
(x + 1)

or η =
(M2 − 1)
(M2 + 1)

Thus returning to original equation yields

ln(x) = ln
(

1 + η

1− η

)

The right hand side can be expanded as

ln
(

1 + η

1− η

)
= 2 η

(
1
1

+
1
3
η2 +

1
5
η4 +

1
7
η6 +

1
9
η8 + · · ·

)

For small M2 (therefor for η) the resistance can be approximated as

4 f Lmax

D
=

1
k

1
M2

+
(k + 1) η

k

(
1
1

+
1
3
η2 +

1
5
η4 +

1
7
η6 +

1
9
η8 + · · ·

)

+
(k + 1)

k
ln

k + 1
2

(10.39)
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End Advance material

Equations (10.23), (10.26), (10.27), (10.28), (10.28), and (10.29) can be
solved. For example, the pressure as written in equation (10.22) is represented by
4fL
D , and Mach number. Now equation (10.23) can eliminate term 4fL

D and describe
the pressure on the Mach number. Dividing equation (10.23) in equation (10.25) yields

dP

P
dM2

M2

= − 1 + (k − 1M2

2 M2

(
1 +

k − 1
2

M2

) dM2 (10.40)

The symbol “*” denotes the state when the flow is choked and Mach number is equal
to 1. Thus, M = 1 when P = P ∗ equation (10.40) can be integrated to yield:

P

P ∗
=

1
M

√√√√√√
k + 1

2

1 +
k − 1

2
M2

Mach–Pressure Ratio

(10.41)

In the same fashion the variables ratios can be obtained

T

T ∗
=

c2

c∗2
=

k+1
2

1 + k−1
2 M2

Temperature Ratio

(10.42)

The density ratio is

ρ

ρ∗
=

1
M

√√√√√√
1 +

k − 1
2

M2

k + 1
2

Density Ratio

(10.43)

The velocity ratio is

U

U∗ =
(

ρ

ρ∗

)−1

= M

√√√√√√
k + 1

2

1 +
k − 1

2
M2

Velocity Ratio

(10.44)
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The stagnation pressure decreases and can be expressed by

P0

P0
∗ =

(1+ 1−k
2 M2)

k
k−1

︷︸︸︷
P0

P
P

P0
∗

P ∗︸︷︷︸
( 2

k+1 )
k

k−1

P ∗
(10.45)

Using the pressure ratio in equation (10.41) and substituting it into equation (10.45)
yields

P0

P0
∗ =




1 +
k − 1

2
M2

k + 1
2




k
k−1

1
M

√√√√√√
1 +

k − 1
2

M2

k + 1
2

(10.46)

And further rearranging equation (10.46) provides

P0

P0
∗ =

1
M




1 +
k − 1

2
M2

k + 1
2




k+1
2 (k−1)

Stagnation Pressure Ratio

(10.47)

The integration of equation (10.33) yields

s− s∗

Cp
= ln M2

√√√√√√√√




k + 1

2 M2

(
1 +

k − 1
2

M2

)




k+1
k

(10.48)

The results of these equations are plotted in Figure 10.2
The Fanno flow is in many cases shockless and therefore a relationship between

two points should be derived. In most times, the “star” values are imaginary values
that represent the value at choking. The real ratio can be obtained by two star ratios
as an example

T2

T1
=

T

T ∗

∣∣∣∣
M2

T

T ∗

∣∣∣∣
M1

(10.49)
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Fig. -10.2. Various parameters in Fanno flow shown as a function of Mach number.

A special interest is the equation for the dimensionless friction as following

∫ L2

L1

4 f L

D
dx =

∫ Lmax

L1

4 f L

D
dx−

∫ Lmax

L2

4 f L

D
dx (10.50)

Hence,

(
4 f Lmax

D

)

2

=
(

4 f Lmax

D

)

1

− 4 f L

D

fld Working Equation

(10.51)

10.6 Examples of Fanno Flow
Example 10.1:
Air flows from a reservoir and enters a uniform pipe with a diameter of 0.05 [m] and length of 10 [m].

P0=?

T0=?
◦
C

M2=0.9

D=0.05[m]
L=10[m]

T2=27
◦
C

P2=1[Bar]

Fig. -10.3. Schematic of Example 10.1.

The air exits to the atmosphere.
The following conditions prevail at
the exit: P2 = 1[bar] temperature
T2 = 27◦C M2 = 0.94. Assume
that the average friction factor to
be f = 0.004 and that the flow
from the reservoir up to the pipe
inlet is essentially isentropic. Es-
timate the total temperature and total pressure in the reservoir under the Fanno flow
model.
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Solution

For isentropic, the flow to the pipe inlet, the temperature and the total pressure at the
pipe inlet are the same as those in the reservoir. Thus, finding the star pressure and
temperature at the pipe inlet is the solution. With the Mach number and temperature
known at the exit, the total temperature at the entrance can be obtained by knowing
the 4fL

D . For given Mach number (M = 0.9) the following is obtained.

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

U
U∗

T
T∗

0.90000 0.01451 1.1291 1.0089 1.0934 0.9146 1.0327

So, the total temperature at the exit is

T ∗|2 =
T ∗

T

∣∣∣∣
2

T2 =
300

1.0327
= 290.5[K]

To “move” to the other side of the tube the 4fL
D is added as

4fL
D

∣∣∣
1

= 4fL
D + 4fL

D

∣∣∣
2

=
4× 0.004× 10

0.05
+ 0.01451 ' 3.21

The rest of the parameters can be obtained with the new 4fL
D either from Table (10.1)

by interpolations or by utilizing the attached program.

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

U
U∗

T
T∗

0.35886 3.2100 3.0140 1.7405 2.5764 0.38814 1.1699

Note that the subsonic branch is chosen. The stagnation ratios has to be added
for M = 0.35886

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.35886 0.97489 0.93840 1.7405 0.91484 1.5922 0.78305

The total pressure P01 can be found from the combination of the ratios as follows:

P01 =

P1︷ ︸︸ ︷
P∗︷ ︸︸ ︷

P2
P ∗

P

∣∣∣∣
2

P

P ∗

∣∣∣∣
1

P0

P

∣∣∣∣
1

=1× 1
1.12913

× 3.014× 1
0.915

= 2.91[Bar]

4This property is given only for academic purposes. There is no Mach meter.
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T01 =

T1︷ ︸︸ ︷
T∗︷ ︸︸ ︷

T2
T ∗

T

∣∣∣∣
2

T

T ∗

∣∣∣∣
1

T0

T

∣∣∣∣
1

=300× 1
1.0327

× 1.17× 1
0.975

' 348K = 75◦C

End Solution

Another academic question/example:

Example 10.2:

d-c nozzle atmospheric
conditions

P0 = 29.65[Bar]

T0 = 400K shock

M1=3.0

Mx=?

D=0.025[m]
L=1.0[m]

Fig. -10.4. The schematic of Example
(10.2).

A system is composed of a convergent-
divergent nozzle followed by a tube with
length of 2.5 [cm] in diameter and 1.0 [m]
long. The system is supplied by a vessel.
The vessel conditions are at 29.65 [Bar], 400
K. With these conditions a pipe inlet Mach
number is 3.0. A normal shock wave occurs
in the tube and the flow discharges to the
atmosphere, determine:

(a) the mass flow rate through the system;

(b) the temperature at the pipe exit; and

(c) determine the Mach number when a normal shock wave occurs [Mx].

Take k = 1.4, R = 287 [J/kgK] and f = 0.005.

Solution

(a) Assuming that the pressure vessel is very much larger than the pipe, therefore the
velocity in the vessel can be assumed to be small enough so it can be neglected.
Thus, the stagnation conditions can be approximated for the condition in the
tank. It is further assumed that the flow through the nozzle can be approximated
as isentropic. Hence, T01 = 400K and P01 = 29.65[Par].
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The mass flow rate through the system is constant and for simplicity point 1 is
chosen in which,

ṁ = ρAM c

The density and speed of sound are unknowns and need to be computed. With
the isentropic relationship, the Mach number at point one (1) is known, then
the following can be found either from Table 10.1, or the popular Potto–GDC as

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

3.0000 0.35714 0.07623 4.2346 0.02722 0.11528 0.65326

The temperature is

T1 =
T1

T01
T01 = 0.357× 400 = 142.8K

Using the temperature, the speed of sound can be calculated as

c1 =
√

k R T =
√

1.4× 287× 142.8 ' 239.54[m/sec]

The pressure at point 1 can be calculated as

P1 =
P1

P01
P01 = 0.027× 30 ' 0.81[Bar]

The density as a function of other properties at point 1 is

ρ1 =
P

RT

∣∣∣∣
1

=
8.1× 104

287× 142.8
' 1.97

[
kg

m3

]

The mass flow rate can be evaluated from equation (10.1)

ṁ = 1.97× π × 0.0252

4
× 3× 239.54 = 0.69

[
kg

sec

]

(b) First, check whether the flow is shockless by comparing the flow resistance and
the maximum possible resistance. From the Table 10.1 or by using the famous
Potto–GDC, is to obtain the following

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

U
U∗

T
T∗

3.0000 0.52216 0.21822 4.2346 0.50918 1.9640 0.42857
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and the conditions of the tube are

4fL
D =

4× 0.005× 1.0
0.025

= 0.8

Since 0.8 > 0.52216 the flow is choked and with a shock wave.

The exit pressure determines the location of the shock, if a shock exists, by
comparing “possible” Pexit to PB . Two possibilities are needed to be checked;
one, the shock at the entrance of the tube, and two, shock at the exit and
comparing the pressure ratios. First, the possibility that the shock wave occurs
immediately at the entrance for which the ratio for Mx are (shock wave Table
6.2)

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

3.0000 0.47519 2.6790 3.8571 10.3333 0.32834

After the shock wave the flow is subsonic with “M1”= 0.47519. (Fanno flow
Table 10.1)

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

U
U∗

T
T∗

0.47519 1.2919 2.2549 1.3904 1.9640 0.50917 1.1481

The stagnation values for M = 0.47519 are

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.47519 0.95679 0.89545 1.3904 0.85676 1.1912 0.65326

The ratio of exit pressure to the chamber total pressure is

P2

P0
=

1︷ ︸︸ ︷(
P2

P ∗

) (
P ∗

P1

) (
P1

P0y

)(
P0y

P0x

)
1︷ ︸︸ ︷(

P0x

P0

)

= 1× 1
2.2549

× 0.8568× 0.32834× 1

= 0.12476
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The actual pressure ratio 1/29.65 = 0.0338 is smaller than the case in which
shock occurs at the entrance. Thus, the shock is somewhere downstream. One
possible way to find the exit temperature, T2 is by finding the location of the
shock. To find the location of the shock ratio of the pressure ratio, P2

P1
is needed.

With the location of shock, “claiming” upstream from the exit through shock
to the entrance. For example, calculate the parameters for shock location with
known 4fL

D in the “y” side. Then either by utilizing shock table or the program,
to obtain the upstream Mach number.

The procedure for the calculations:

1)

Calculate the entrance Mach number assuming the shock occurs at the exit:

a) set M
′
2 = 1 assume the flow in the entire tube is supersonic:

b) calculated M
′
1

Note this Mach number is the high Value.

2)

Calculate the entrance Mach assuming shock at the entrance.

a) set M2 = 1
b) add 4fL

D and calculated M1’ for subsonic branch

c) calculated Mx for M1’

Note this Mach number is the low Value.

3)

According your root finding algorithm5 calculate or guess the shock location
and then compute as above the new M1.

a) set M2 = 1
b) for the new 4fL

D and compute the new My’ for the subsonic branch

c) calculated Mx’ for the My’

d) Add the leftover of 4fL
D and calculated the M1

4) guess new location for the shock according to your finding root procedure and
according to the result, repeat previous stage until the solution is obtained.

M1 M2
4 f L
D

∣∣
up

4 f L
D

∣∣
down

Mx My

3.0000 1.0000 0.22019 0.57981 1.9899 0.57910

(c) The way of the numerical procedure for solving this problem is by finding 4 f L
D

∣∣∣
up

that will produce M1 = 3. In the process Mx and My must be calculated (see
the chapter on the program with its algorithms.).

End Solution

5You can use any method you which, but be-careful second order methods like Newton-Rapson
method can be unstable.
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10.7 Supersonic Branch
In Chapter (9) it was shown that the isothermal model cannot describe adequately the
situation because the thermal entry length is relatively large compared to the pipe length
and the heat transfer is not sufficient to maintain constant temperature. In the Fanno
model there is no heat transfer, and, furthermore, because the very limited amount of
heat transformed it is closer to an adiabatic flow. The only limitation of the model is its
uniform velocity (assuming parabolic flow for laminar and different profile for turbulent
flow.). The information from the wall to the tube center6 is slower in reality. However,
experiments from many starting with 1938 work by Frossel7 has shown that the error
is not significant. Nevertheless, the comparison with reality shows that heat transfer
cause changes to the flow and they need/should to be expected. These changes include
the choking point at lower Mach number.

10.8 Maximum Length for the Supersonic Flow
It has to be noted and recognized that as opposed to subsonic branch the supersonic
branch has a limited length. It also must be recognized that there is a maximum
length for which only supersonic flow can exist8. These results were obtained from the
mathematical derivations but were verified by numerous experiments9. The maximum
length of the supersonic can be evaluated when M = ∞ as follows:

4 f Lmax

D
=

1−M2

kM2
+

k + 1
2k

ln
k+1
2 M2

2
(
1 + k−1

2 M2
) =

4fL
D (M →∞) ∼ −∞

k ×∞ +
k + 1
2k

ln
(k + 1)∞
(k − 1)∞

=
−1
k

+
k + 1
2 k

ln
(k + 1)
(k − 1)

= 4fL
D (M →∞, k = 1.4) = 0.8215

4 f Lmax

D
= 4fL

D (M →∞, k = 1.4) = 0.8215 (10.52)

The maximum length of the supersonic flow is limited by the above number. From the
above analysis, it can be observed that no matter how high the entrance Mach number
will be the tube length is limited and depends only on specific heat ratio, k as shown
in Figure (10.5).

6The word information referred to is the shear stress transformed from the wall to the center of the
tube.

7See on the web http://naca.larc.nasa.gov/digidoc/report/tm/44/NACA-TM-844.PDF
8Many in the industry have difficulties in understanding this concept. The author seeks for a nice

explanation of this concept for non–fluid mechanics engineers. This solicitation is about how to explain
this issue to non-engineers or engineer without a proper background.

9If you have experiments demonstrating this point, please provide to the undersign so they can be
added to this book. Many of the pictures in the literature carry copyright statements and thus can be
presented here.
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Fig. -10.5. The maximum length as a function of specific heat, k.

10.9 Working Conditions

T0T
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Fig. -10.6. The effects of increase of
4 f L

D
on the Fanno line.

It has to be recognized that there are two regimes
that can occur in Fanno flow model one of subsonic
flow and the other supersonic flow. Even the flow
in the tube starts as a supersonic in parts of the
tube can be transformed into the subsonic branch.
A shock wave can occur and some portions of the
tube will be in a subsonic flow pattern.

The discussion has to differentiate between
two ways of feeding the tube: converging nozzle
or a converging-diverging nozzle. Three parame-
ters, the dimensionless friction, 4 f L

D , the entrance
Mach number, M1, and the pressure ratio, P2/P1

are controlling the flow. Only a combination of these two parameters is truly indepen-
dent. However, all the three parameters can be varied and they are discussed separately
here.
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10.9.1 Variations of The Tube Length (4fL
D

) Effects

In the analysis of this effect, it should be assumed that back pressure is constant and/or
low as possible as needed to maintain a choked flow. First, the treatment of the two
branches are separated.

Fanno Flow Subsonic branch

T0

s

constant pressure
lines

Fanno lines

1
1’

1’’

2

2’

2’’

T

Fig. -10.7. The effects of the increase of
4 f L

D
on the Fanno Line.

For converging nozzle feeding, increasing the
tube length results in increasing the exit Mach
number (normally denoted herein as M2).
Once the Mach number reaches maximum
(M = 1), no further increase of the exit Mach
number can be achieved. In this process, the
mass flow rate decreases.

It is worth noting that entrance Mach
number is reduced (as some might explain it
to reduce the flow rate). The entrance tem-
perature increases as can be seen from Figure
(10.7). The velocity therefore must decrease because the loss of the enthalpy (stagna-
tion temperature) is “used.” The density decrease because ρ = P

RT and when pressure is
remains almost constant the density decreases. Thus, the mass flow rate must decrease.
These results are applicable to the converging nozzle.

In the case of the converging–diverging feeding nozzle, increase of the dimension-
less friction, 4fL

D , results in a similar flow pattern as in the converging nozzle. Once
the flow becomes choked a different flow pattern emerges.

Fanno Flow Supersonic Branch

M = 1
_m

4fLD

all supersonic
flow

mixed supersonic
with subsonic
flow with a shock
between

the nozzle
is still
choked

_m = 
onst

M1
M2

a

b cM

M1
Fig. -10.8. The Mach numbers at entrance and
exit of tube and mass flow rate for Fanno Flow
as a function of the 4fL

D
.

There are several transitional points that
change the pattern of the flow. Point a
is the choking point (for the supersonic
branch) in which the exit Mach number
reaches to one. Point b is the maximum
possible flow for supersonic flow and is not
dependent on the nozzle. The next point,
referred here as the critical point c, is the
point in which no supersonic flow is pos-
sible in the tube i.e. the shock reaches
to the nozzle. There is another point d,
in which no supersonic flow is possible in
the entire nozzle–tube system. Between
these transitional points the effect param-
eters such as mass flow rate, entrance and
exit Mach number are discussed.
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At the starting point the flow is choked in the nozzle, to achieve supersonic flow.
The following ranges that has to be discussed includes (see Figure (10.8)):

0 < 4 f L
D <

(
4 f L

D

)
choking

0 → a
(

4 f L
D

)
choking

< 4 f L
D <

(
4 f L

D

)
shockless

a → b
(

4 f L
D

)
shockless

< 4 f L
D <

(
4 f L

D

)
chokeless

b → c
(

4 f L
D

)
chokeless

< 4 f L
D < ∞ c →∞

The 0-a range, the mass flow rate is constant because the flow is choked at the
nozzle. The entrance Mach number, M1 is constant because it is a function of the
nozzle design only. The exit Mach number, M2 decreases (remember this flow is on
the supersonic branch) and starts ( 4 f L

D = 0) as M2 = M1. At the end of the range a,
M2 = 1. In the range of a− b the flow is all supersonic.

In the next range a− b The flow is double choked and make the adjustment for
the flow rate at different choking points by changing the shock location. The mass flow
rate continues to be constant. The entrance Mach continues to be constant and exit
Mach number is constant.

The total maximum available for supersonic flow b − b′,
(

4 f L
D

)
max

, is only a

theoretical length in which the supersonic flow can occur if nozzle is provided with a
larger Mach number (a change to the nozzle area ratio which also reduces the mass
flow rate). In the range b− c, it is a more practical point.

In semi supersonic flow b− c (in which no supersonic is available in the tube but
only in the nozzle) the flow is still double choked and the mass flow rate is constant.
Notice that exit Mach number, M2 is still one. However, the entrance Mach number,
M1, reduces with the increase of 4 f L

D .
It is worth noticing that in the a− c the mass flow rate nozzle entrance velocity

and the exit velocity remains constant!10

In the last range c −∞ the end is really the pressure limit or the break of the
model and the isothermal model is more appropriate to describe the flow. In this range,
the flow rate decreases since (ṁ ∝ M1)11.

To summarize the above discussion, Figures (10.8) exhibits the development of
M1, M2 mass flow rate as a function of 4 f L

D . Somewhat different then the subsonic
branch the mass flow rate is constant even if the flow in the tube is completely subsonic.
This situation is because of the “double” choked condition in the nozzle. The exit Mach

10On a personal note, this situation is rather strange to explain. On one hand, the resistance increases
and on the other hand, the exit Mach number remains constant and equal to one. Does anyone have
an explanation for this strange behavior suitable for non–engineers or engineers without background in
fluid mechanics?

11Note that ρ1 increases with decreases of M1 but this effect is less significant.
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M2 is a continuous monotonic function that decreases with 4 f L
D . The entrance Mach

M1 is a non continuous function with a jump at the point when shock occurs at the
entrance “moves” into the nozzle.
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Fig. -10.9. M1 as a function M2 for various 4fL
D

.

Figure 10.9 exhibits the M1 as a function of M2. The Figure was calculated by

utilizing the data from Figure (10.2) by obtaining the 4 f L
D

∣∣∣
max

for M2 and subtracting

the given 4 f L
D and finding the corresponding M1.

The Figure (10.10) exhibits the entrance Mach number as a function of the M2.
Obviously there can be two extreme possibilities for the subsonic exit branch. Subsonic
velocity occurs for supersonic entrance velocity, one, when the shock wave occurs at
the tube exit and two, at the tube entrance. In Figure (10.10) only for 4 f L

D = 0.1 and
4 f L

D = 0.4 two extremes are shown. For 4 f L
D = 0.2 shown with only shock at the

exit only. Obviously, and as can be observed, the larger 4 f L
D creates larger differences

between exit Mach number for the different shock locations. The larger 4 f L
D larger M1
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Fig. -10.10. M1 as a function M2 for different 4fL
D

for supersonic entrance velocity.

must occurs even for shock at the entrance.

For a given 4 f L
D , below the maximum critical length, the supersonic entrance

flow has three different regimes which depends on the back pressure. One, shockless
flow, tow, shock at the entrance, and three, shock at the exit. Below, the maximum
critical length is mathematically

4 f L

D
> −1

k
+

1 + k

2 k
ln

(
k + 1
k − 1

)

For cases of 4 f L
D above the maximum critical length no supersonic flow can be over

the whole tube and at some point a shock will occur and the flow becomes subsonic
flow12.

12See more on the discussion about changing the length of the tube.
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10.9.2 The Pressure Ratio, P2/ P1, effects

In this section the studied parameter is the variation of the back pressure and thus, the
pressure ratio (P2/ P1) variations. For very low pressure ratio the flow can be assumed
as incompressible with exit Mach number smaller than < 0.3. As the pressure ratio
increases (smaller back pressure, P2), the exit and entrance Mach numbers increase.
According to Fanno model the value of 4 f L

D is constant (friction factor, f , is indepen-
dent of the parameters such as, Mach number, Reynolds number et cetera) thus the
flow remains on the same Fanno line. For cases where the supply come from a reservoir
with a constant pressure, the entrance pressure decreases as well because of the increase
in the entrance Mach number (velocity).

Again a differentiation of the feeding is important to point out. If the feeding
nozzle is converging than the flow will be only subsonic. If the nozzle is “converging–
diverging” than in some part supersonic flow is possible. At first the converging nozzle
is presented and later the converging-diverging nozzle is explained.

∆PP1 P2

4 f L

D

P2

P1

critical point c
critical point bcritical point a

a shock in
the nozzle

fully subsoinic
flow

critical point d

Fig. -10.11. The pressure distribution as a function of 4 f L
D

for a short 4 f L
D

.
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Choking explanation for pressure variation/reduction

Decreasing the pressure ratio or in actuality the back pressure, results in increase of the
entrance and the exit velocity until a maximum is reached for the exit velocity. The
maximum velocity is when exit Mach number equals one. The Mach number, as it was
shown in Chapter (5), can increases only if the area increase. In our model the tube area
is postulated as a constant therefore the velocity cannot increase any further. However,
for the flow to be continuous the pressure must decrease and for that the velocity must
increase. Something must break since there are conflicting demands and it result in a
“jump” in the flow. This jump is referred to as a choked flow. Any additional reduction
in the back pressure will not change the situation in the tube. The only change will be
at tube surroundings which are irrelevant to this discussion.

If the feeding nozzle is a “converging–diverging” then it has to be differentiated
between two cases; One case is where the 4 f L

D is short or equal to the critical length.

The critical length is the maximum 4 f L
D

∣∣∣
max

that associate with entrance Mach num-

ber.
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Short 4 f L/ D

Figure 10.12 shows different pressure profiles for different back pressures. Before the
flow reaches critical point a (in the Figure 10.12) the flow is subsonic. Up to this
stage the nozzle feeding the tube increases the mass flow rate (with decreasing back
pressure). Pressure between point a and point b the shock is in the nozzle. In this
range and further reduction of the pressure the mass flow rate is constant no matter
how low the back pressure is reduced. Once the back pressure is less than point b the
supersonic reaches to the tube. Note however that exit Mach number, M2 < 1 and is
not 1. A back pressure that is at the critical point c results in a shock wave that is at
the exit. When the back pressure is below point c, the tube is “clean” of any shock13.
The back pressure below point c has some adjustment as it occurs with exceptions of
point d.
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Fig. -10.13. The effects of pressure variations on Mach number profile as a function of 4 f L
D

when the total resistance 4 f L
D

= 0.3 for Fanno Flow.

Long 4 f L
D

In the case of 4 f L
D > 4 f L

D

∣∣∣
max

reduction of the back pressure results in the same

process as explained in the short 4 f L
D up to point c. However, point c in this case is

different from point c at the case of short tube 4 f L
D < 4 f L

D

∣∣∣
max

. In this point the

exit Mach number is equal to 1 and the flow is double shock. Further reduction of the

13It is common misconception that the back pressure has to be at point d.
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back pressure at this stage will not “move” the shock wave downstream the nozzle. At
point c or location of the shock wave, is a function entrance Mach number, M1 and
the “extra” 4 f L

D . There is no analytical solution for the location of this point c. The
procedure is (will be) presented in later stage.
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Fig. -10.14. Pressure ratios as a function of 4 f L
D

when the total 4 f L
D

= 0.3.

10.9.3 Entrance Mach number, M1, effects

In this discussion, the effect of changing the throat area on the nozzle efficiency is
neglected. In reality these effects have significance and needs to be accounted for some
instances. This dissection deals only with the flow when it reaches the supersonic branch
reached otherwise the flow is subsonic with regular effects. It is assumed that in this
discussion that the pressure ratio P2

P1
is large enough to create a choked flow and 4 f L

D
is small enough to allow it to occur.

Mx

shock
M= 1My

M=∞ or less

4 f L
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∣

∣

∣

∣

max∞
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D

∣

∣
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∣

retreat

∆

(

4 f L

D

)

Fig. -10.15. Schematic of a “long” tube in su-
personic branch.

The entrance Mach number, M1 is a
function of the ratio of the nozzle’s throat
area to the nozzle exit area and its effi-
ciency. This effect is the third parameter
discussed here. Practically, the nozzle area
ratio is changed by changing the throat
area.

As was shown before, there are two
different maximums for 4 f L

D ; first is the

total maximum 4 f L
D of the supersonic
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which depends only on the specific heat, k, and second the maximum depends on the
entrance Mach number, M1. This analysis deals with the case where 4 f L

D is shorter

than total 4 f L
D

∣∣∣
max

. Obviously, in this situation, the critical point is where 4 f L
D is

equal to 4 f L
D

∣∣∣
max

as a result in the entrance Mach number.

The process of decreasing the converging–diverging nozzle’s throat increases the
entrance14 Mach number. If the tube contains no supersonic flow then reducing the
nozzle throat area wouldn’t increase the entrance Mach number.

This part deals with cases where some part of the tube is under supersonic regime
and there is a shock as a transition to subsonic branch. Decreasing the nozzle throat area
moves the shock location downstream. The “payment” for increase in the supersonic
length is by reducing the mass flow. Further, decrease of the throat area results in
flushing the shock out of the tube. By doing so, the throat area decreases. The
mass flow rate is proportionally linear to the throat area and therefore the mass flow
rate reduces. The process of decreasing the throat area also results in increasing the
pressure drop of the nozzle (larger resistance in the nozzle15)16.

In the case of large tube 4 f L
D > 4 f L

D

∣∣∣
max

the exit Mach number increases

with the decrease of the throat area. Once the exit Mach number reaches one no
further increases is possible. However, the location of the shock wave approaches to
the theoretical location if entrance Mach, M1 = ∞.

The Maximum Location of the Shock

The main point in this discussion however, is to find the furthest shock location

downstream. Figure (10.16) shows the possible ∆
(

4 f L
D

)
as a function of retreat of

the location of the shock wave from the maximum location. When the entrance Mach
number is infinity, M1 = ∞, if the shock location is at the maximum length, then shock
at Mx = 1 results in My = 1.

The proposed procedure is based on Figure 10.16.

i) Calculate the extra 4 f L
D and subtract the actual extra 4 f L

D assuming shock at
the left side (at the max length).

ii) Calculate the extra 4 f L
D and subtract the actual extra 4 f L

D assuming shock at
the right side (at the entrance).

iii) According to the positive or negative utilizes your root finding procedure.

From numerical point of view, the Mach number equal infinity when left side
assumes result in infinity length of possible extra (the whole flow in the tube is subsonic).

14The word “entrance” referred to the tube and not to the nozzle. The reference to the tube is
because it is the focus of the study here.

15Strange? Frictionless nozzle has a larger resistance when the throat area decreases.
16It is one of the strange phenomenon that in one way increasing the resistance (changing the throat

area) decreases the flow rate while in a different way (increasing the 4 f L
D

) does not affect the flow
rate.
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Fig. -10.16. The extra tube length as a function of the shock location, 4 f L
D

supersonic branch.

To overcome this numerical problem, it is suggested to start the calculation from ε
distance from the right hand side.

Let denote

∆
(

4 f L

D

)
=

¯4 f L

D actual
− 4 f L

D

∣∣∣∣
sup

(10.53)

Note that 4 f L
D

∣∣∣
sup

is smaller than 4 f L
D

∣∣∣
max∞

. The requirement that has to be satis-

fied is that denote 4 f L
D

∣∣∣
retreat

as difference between the maximum possible of length

in which the supersonic flow is achieved and the actual length in which the flow is
supersonic see Figure 10.17. The retreating length is expressed as subsonic but

4 f L

D

∣∣∣∣
retreat

=
4 f L

D

∣∣∣∣
max∞

− 4 f L

D

∣∣∣∣
sup

(10.54)

Figure 10.17 shows the entrance Mach number, M1 reduces after the maximum
length is exceeded.

Example 10.3:
Calculate the shock location for entrance Mach number M1 = 8 and for 4 f L

D = 0.9
assume that k = 1.4 (Mexit = 1).



10.9. WORKING CONDITIONS 273

4fLD4fL

D

∣

∣

∣

∣

∣

∣

∣

max∞

M1max

1

Fig. -10.17. The maximum entrance Mach number, M1 to the tube as a function of 4fL
D

supersonic branch.

Solution

The solution is obtained by an iterative process. The maximum 4 f L
D

∣∣∣
max

for k =

1.4 is 0.821508116. Hence, 4 f L
D exceed the maximum length 4 f L

D for this entrance

Mach number. The maximum for M1 = 8 is 4 f L
D = 0.76820, thus the extra tube

is ∆
(

4 f L
D

)
= 0.9 − 0.76820 = 0.1318. The left side is when the shock occurs at

4 f L
D = 0.76820 (flow is choked and no additional 4 f L

D ). Hence, the value of left side

is −0.1318. The right side is when the shock is at the entrance at which the extra 4 f L
D

is calculated for Mx and My is

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

8.0000 0.39289 13.3867 5.5652 74.5000 0.00849

With (M1)′

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

U
U∗

T
T∗

0.39289 2.4417 2.7461 1.6136 2.3591 0.42390 1.1641
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The extra ∆
(

4 f L
D

)
is 2.442− 0.1318 = 2.3102 Now the solution is somewhere

between the negative of left side to the positive of the right side17.

In a summary of the actions is done by the following algorithm:

(a) check if the 4 f L
D exceeds the maximum 4 f L

D max
for the supersonic flow. Ac-

cordingly continue.

(b) Guess 4 f L
D up

= 4 f L
D − 4 f L

D

∣∣∣
max

(c) Calculate the Mach number corresponding to the current guess of 4 f L
D up

,

(d) Calculate the associate Mach number, Mx with the Mach number, My calcu-
lated previously,

(e) Calculate 4 f L
D for supersonic branch for the Mx

(f) Calculate the “new and improved” 4 f L
D up

(g) Compute the “new 4 f L
D down

= 4 f L
D − 4 f L

D up

(h) Check the new and improved 4 f L
D

∣∣∣
down

against the old one. If it is satisfactory

stop or return to stage (b).

Shock location are:

M1 M2
4 f L
D

∣∣
up

4 f L
D

∣∣
down

Mx My

8.0000 1.0000 0.57068 0.32932 1.6706 0.64830

The iteration summary is also shown below

17What if the right side is also negative? The flow is chocked and shock must occur in the nozzle
before entering the tube. Or in a very long tube the whole flow will be subsonic.
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i 4 f L
D

∣∣
up

4 f L
D

∣∣
down

Mx My
4 f L
D

0 0.67426 0.22574 1.3838 0.74664 0.90000

1 0.62170 0.27830 1.5286 0.69119 0.90000

2 0.59506 0.30494 1.6021 0.66779 0.90000

3 0.58217 0.31783 1.6382 0.65728 0.90000

4 0.57605 0.32395 1.6554 0.65246 0.90000

5 0.57318 0.32682 1.6635 0.65023 0.90000

6 0.57184 0.32816 1.6673 0.64920 0.90000

7 0.57122 0.32878 1.6691 0.64872 0.90000

8 0.57093 0.32907 1.6699 0.64850 0.90000

9 0.57079 0.32921 1.6703 0.64839 0.90000

10 0.57073 0.32927 1.6705 0.64834 0.90000

11 0.57070 0.32930 1.6706 0.64832 0.90000

12 0.57069 0.32931 1.6706 0.64831 0.90000

13 0.57068 0.32932 1.6706 0.64831 0.90000

14 0.57068 0.32932 1.6706 0.64830 0.90000

15 0.57068 0.32932 1.6706 0.64830 0.90000

16 0.57068 0.32932 1.6706 0.64830 0.90000

17 0.57068 0.32932 1.6706 0.64830 0.90000

This procedure rapidly converted to the solution.
End Solution

10.10 The Practical Questions and Examples of Subsonic
branch

The Fanno is applicable also when the flow isn’t choke18. In this case, several questions
appear for the subsonic branch. This is the area shown in Figure (10.8) in beginning for
between points 0 and a. This kind of questions made of pair given information to find
the conditions of the flow, as oppose to only one piece of information given in choked

18These questions were raised from many who didn’t find any book that discuss these practical
aspects and send the questions to this author.



276 CHAPTER 10. FANNO FLOW

flow. There many combinations that can appear in this situation but there are several
more physical and practical that will be discussed here.

10.10.1 Subsonic Fanno Flow for Given 4 f L
D

and Pressure Ratio

P2

M2
∆

4fL

D
4fL

D

M1

P1

M = 1

P = P ∗

hypothetical section

Fig. -10.18. Unchoked flow calculations showing the
hypothetical “full” tube when choked

This pair of parameters is the most
natural to examine because, in most
cases, this information is the only
provided information. For a given

pipe
(

4 f L
D

)
, neither the entrance

Mach number nor the exit Mach
number are given (sometimes the
entrance Mach number is given see
the next section). There is no known
exact analytical solution. There are
two possible approaches to solve this problem: one, by building a representative func-
tion and find a root (or roots) of this representative function. Two, the problem can be
solved by an iterative procedure. The first approach require using root finding method
and either method of spline method or the half method or the combination of the two. In
the past, this book advocated the integrative method. Recently, this author investigate
proposed an improved method.
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Fig. -10.19. Pressure ratio obtained for a
fix 4 f L

D
as a function of Mach number for

k=1.4.

This method is based on the entrance
Mach number as the base. The idea based on
the idea that the pressure ratio can be drawn
as a function of the entrance Mach number.
One of difficulties lays in the determination the
boundaries of the entrance Mach number. The
maximum entrance Mach number is chocking
Mach number. The lower possible Mach num-
ber is zero which creates very large 4 f L

D . The

equations are solve for these large 4 f L
D num-

bers by perturbation method and the analytical
solution is

M1 =

√√√√√√√
1−

[
P2

P0

]2

k
4 f L

D

(10.55)

Equation (10.55) is suggested to be used up to M1 < 0.02. To have small overlapping
zone the lower boundary is M1 < 0.01.

The process is based on finding the pressure ratio for given 4 f L
D pipe dimensionless

length. Figure 10.19 exhibits the pressure ratio for fix 4 f L
D as function of the entrance

Mach number. As it can be observed, the entrance Mach number lays between zero
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and the maximum of the chocking conditions. For example for a fixed pipe, 4 f L
D = 1

the maximum Mach number is 0.50874 as shown in Figure 10.19 by orange line. For a

given entrance Mach number, the pressure ratio, P1/P ∗ and 4 f L
D

∣∣∣
1

can be calculated.

The exit pipe length, 4 f L
D

∣∣∣
2

is obtained by subtracting the fix length 4 f L
D from 4 f L

D

∣∣∣
1
.

With this value, the exit Mach number, M2 and pressure ratio P2/P ∗ are calculated.
Hence the pressure ratio, P2/P1 can be obtained and is drawn in Figure 10.19.

Hence, when the pressure ratio, P2/P1 is given along with given pipe, 4 f L
D the

solution can be obtained by drawing a horizontal line. The intersection of the horizontal
line with the right curve of the pressure ratio yields the entrance Mach number. This
can be done by a computer program such Potto–GDC (version 0.5.2 and above). The
summary of the procedure is as the following.

1) If the pressure ratio is P2/P1 < 0.02 then using the perturbed solution the entrance
Mach number is very small and calculate using the formula

M =

√√√√√√√(1−
P2

P1

k

(
4 f L

D

) (10.56)

If the pressure ratio smaller than continue with the following.

2) Calculate the
4 f L

D

∣∣∣∣
1

for M1 = 0.01

3) Subtract the given
4 f L

D
from

4 f L

D

∣∣∣∣
1

and calculate the exit Mach number.

4) Calculate the pressure ratio.

5) Calculate the pressure ratio for choking condition (given
4 f L

D
.

6) Use your favorite to method to calculate root finding (In potto–GDC Brent’s method
is used)

Example runs is presented in the Figure 10.20 for 4 f L
D = 0.5 and pressure ratio

equal to 0.8. The blue line in Figure 10.19 intersection with the horizontal line of
P2/P1 = 0.8 yield the solution of M ∼ 0.5. The whole solution obtained in 7 iterations
with accuracy of 10−12.

In Potto–GDC there is another older iterative method used to solve constructed
on the properties of several physical quantities must be in a certain range. The first fact
is that the pressure ratio P2/P1 is always between 0 and 1 (see Figure 10.18). In the
figure, a theoretical extra tube is added in such a length that cause the flow to choke
(if it really was there). This length is always positive (at minimum is zero).

The procedure for the calculations is as the following:
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Fig. -10.20. Conversion of solution for given
4 f L

D
= 0.5 and pressure ratio equal 0.8.

1) Calculate the entrance Mach number, M1

′
assuming the 4 f L

D = 4 f L
D

∣∣∣
max

′

(chocked flow);

Calculate the minimum pressure ratio (P2/P1)min for M1

′
(look at table (10.1))

2) Check if the flow is choked:
There are two possibilities to check it.

a) Check if the given 4 f L
D is smaller than 4 f L

D obtained from the given P1/P2, or

b) check if the (P2/P1)min is larger than (P2/P1),

continue if the criteria is satisfied. Or if not satisfied abort this procedure and
continue to calculation for choked flow.

3) Calculate the M2 based on the (P ∗/P2) = (P1/P2),

4) calculate ∆4 f L
D based on M2,

5) calculate the new (P2/P1), based on the new f
((

4 f L
D

)
1
,
(

4 f L
D

)
2

)
,

(remember that ∆4 f L
D =

(
4 f L

D

)
2
),

6) calculate the corresponding M1 and M2,

7) calculate the new and “improve” the ∆4 f L
D by

(
∆

4 f L

D

)

new

=
(

∆
4 f L

D

)

old

∗

(
P2
P1

)
given(

P2
P1

)
old

(10.57)
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Note, when the pressure ratios are matching also the ∆4 f L
D will also match.

8) Calculate the “improved/new” M2 based on the improve ∆ 4 f L
D

9) calculate the improved 4 f L
D as 4 f L

D =
(

4 f L
D

)
given

+ ∆
(

4 f L
D

)
new

10) calculate the improved M1 based on the improved 4 f L
D .

11) Compare the abs ((P2/P1)new − (P2/P1)old ) and if not satisfied
returned to stage (5) until the solution is obtained.

To demonstrate how this procedure is working consider a typical example of
4 f L

D = 1.7 and P2/P1 = 0.5. Using the above algorithm the results are exhibited
in the following figure.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Number of Iterations,

0.5

1.0

1.5

2.0

2.5

3.0

M1

M2

P2/P1

Conversion occurs around 7-9 times

i

4fL

D

∆4fL

D

October 8, 2007

Fig. -10.21. The results of the algorithm showing the conversion rate for unchoked Fanno flow
model with a given 4 f L

D
and pressure ratio.

Figure 10.21 demonstrates that the conversion occur at about 7-8 iterations. With
better first guess this conversion procedure converts much faster but at certain range
it is unstable.

10.10.2 Subsonic Fanno Flow for a Given M1 and Pressure Ratio

This situation pose a simple mathematical problem while the physical situation occurs
in cases where a specific flow rate is required with a given pressure ratio (range) (this
problem was considered by some to be somewhat complicated). The specific flow rate
can be converted to entrance Mach number and this simplifies the problem. Thus,
the problem is reduced to find for given entrance Mach, M1, and given pressure ratio
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calculate the flow parameters, like the exit Mach number, M2. The procedure is based
on the fact that the entrance star pressure ratio can be calculated using M1. Thus,
using the pressure ratio to calculate the star exit pressure ratio provide the exit Mach
number, M2. An example of such issue is the following example that combines also the
“Naughty professor” problems.

Example 10.4:
Calculate the exit Mach number for P2/P1 = 0.4 and entrance Mach number M1 =
0.25.

Solution

The star pressure can be obtained from a table or Potto-GDC as

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

U
U∗

T
T∗

0.25000 8.4834 4.3546 2.4027 3.6742 0.27217 1.1852

And the star pressure ratio can be calculated at the exit as following

P2

P ∗
=

P2

P1

P1

P ∗
= 0.4× 4.3546 = 1.74184

And the corresponding exit Mach number for this pressure ratio reads

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

U
U∗

T
T∗

0.60694 0.46408 1.7418 1.1801 1.5585 0.64165 1.1177

A bit show off the Potto–GDC can carry these calculations in one click as

M1 M2 4 f L
D

P2

P1

0.25000 0.60693 8.0193 0.40000

End Solution

While the above example show the most simple from of this question, in reality
this question is more complicated. One common problem is situation that the diameter
is not given but the flow rate and length and pressure (stagnation or static) with some
combination of the temperature. The following example deal with one of such example.

Example 10.5:
A tank filled with air at stagnation pressure, 2[Bar] should be connected to a pipe
with a friction factor, f = 0.005, and and length of 5[m]. The flow rate is (should be)
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0.1
[

kg
sec

]
and the static temperature at the entrance of the pipe was measured to be

27◦C. The pressure ratio P2/P1 should not fall below 0.9 (P2/P1 > 0.9). Calculate
the exit Mach number, M2, flow rate, and minimum pipe diameter. You can assume
that k = 1.4.

Solution

The direct mathematical solution isn’t possible and some kind of iteration procedure
or root finding for a representative function is needed. For the first part the “naughty
professor” procedure cannot be used because ṁ/A is not provided and the other hand
4 f L

D is not provided (missing Diameter). One possible solution is to guess the entrance
Mach and check whether and the mass flow rate with the “naughty professor” procedure
are satisfied. For Fanno flow for several Mach numbers the following is obtained

M1 M2 4 f L
D

P2

P1
Diameter

0.100 0.11109 13.3648 0.90000 0.00748

0.150 0.16658 5.8260 0.90000 0.01716

0.200 0.22202 3.1887 0.90000 0.03136

From the last table the diameter can be calculated for example for M1 = 0.2 as

D =
4 f L

4 f L

D

= 4× 0.005× 5/3.1887 = 0.03136[m]

The same was done for all the other Mach numbers. Now the area can be calculated
and therefor the ṁ/A can be calculated. With this information the “naughty professor”
is given and the entrance Mach number can be calculated. For example for M1 = 0.2
one can obtain the following:

ṁ/A = 0.1/(π × 0.031362/4) ∼ 129.4666798

The same order as the above table it shown in “naughty professor” (isentropic table).

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

1.5781 0.66752 0.36404 1.2329 0.24300 0.29960 0.56009

0.36221 0.97443 0.93730 1.7268 0.91334 1.5772 0.77785

0.10979 0.99760 0.99400 5.3092 0.99161 5.2647 2.2306

The first result are not reasonable and this process can continue until the satisfactory
solution is achieved. Here an graphical approximation is shown (see Figure 10.22). From
this exhibit it can be estimated that M1 = 0.18. For this Mach number the following
can be obtained
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Fig. -10.22. Diagram for finding solution when the pressure ratio and entrance properties (T
and P0 are given.

M1 M2 4 f L
D

P2

P1

0.18000 0.19985 3.9839 0.90000

Thus, the diameter can be obtained as D ∼ 0.0251[m]
The flow rate is ṁ/A ∼ 202.1[kg/sec×m2]

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.17109 0.99418 0.98551 3.4422 0.97978 3.3726 1.4628

The exact solution is between 0.17 to 0.18 if better accuracy is needed more iterations
are required.

End Solution

10.11 The Approximation of the Fanno Flow by Isothermal
Flow

The isothermal flow model has equations that theoreticians find easier to use and to
compare to the Fanno flow model. One must notice that the maximum temperature
at the entrance is T01. When the Mach number decreases the temperature approaches
the stagnation temperature (T → T0). Hence, if one allows certain deviation of tem-
perature, say about 1% that flow can be assumed to be isothermal. This tolerance
requires that (T0 − T )/T0 = 0.99 which requires that enough for M1 < 0.15 even for
large k = 1.67. This requirement provides that somewhere (depend) in the vicinity of
4 f L

D = 25 the flow can be assumed isothermal. Hence the mass flow rate is a function

of 4 f L
D because M1 changes. Looking at the table or Figure 10.2 or the results from

Potto–GDC attached to this book shows that reduction of the mass flow is very rapid.
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Fig. -10.23. The entrance Mach number as a function of dimensionless resistance and com-
parison with Isothermal Flow.

As it can be seen for the Figure 10.23 the dominating parameter is 4 f L
D . The

results are very similar for isothermal flow. The only difference is in small dimensionless
friction, 4 f L

D .

10.12 More Examples of Fanno Flow
Example 10.6:
To demonstrate the utility in Figure (10.23) consider the following example. Find the
mass flow rate for f = 0.05, L = 4[m], D = 0.02[m] and pressure ratio P2/P1 =
0.1, 0.3, 0.5, 0.8. The stagnation conditions at the entrance are 300K and 3[bar] air.

Solution

First calculate the dimensionless resistance, 4 f L
D .

4 f L

D
=

4× 0.05× 4
0.02

= 40

From Figure 10.23 for P2/P1 = 0.1 M1 ≈ 0.13 etc.
or accurately by utilizing the program as in the following table.
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M1 M2
4 f L
D

4 f L
D

∣∣
1

4 f L
D

∣∣
2

P2

P1

0.12728 1.0000 40.0000 40.0000 0.0 0.11637

0.12420 0.40790 40.0000 42.1697 2.1697 0.30000

0.11392 0.22697 40.0000 50.7569 10.7569 0.50000

0.07975 0.09965 40.0000 107.42 67.4206 0.80000

Only for the pressure ratio of 0.1 the flow is choked.

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

0.12728 0.99677 0.99195 4.5910 0.98874 4.5393

0.12420 0.99692 0.99233 4.7027 0.98928 4.6523

0.11392 0.99741 0.99354 5.1196 0.99097 5.0733

0.07975 0.99873 0.99683 7.2842 0.99556 7.2519

Therefore, T ≈ T0 and is the same for the pressure. Hence, the mass rate is a
function of the Mach number. The Mach number is indeed a function of the pressure
ratio but mass flow rate is a function of pressure ratio only through Mach number.

The mass flow rate is

ṁ = PAM

√
k

RT
= 300000× π × 0.022

4
× 0.127×

√
1.4

287300
≈ 0.48

(
kg

sec

)

and for the rest

ṁ

(
P2

P1
= 0.3

)
∼ 0.48× 0.1242

0.1273
= 0.468

(
kg

sec

)

ṁ

(
P2

P1
= 0.5

)
∼ 0.48× 0.1139

0.1273
= 0.43

(
kg

sec

)

ṁ

(
P2

P1
= 0.8

)
∼ 0.48× 0.07975

0.1273
= 0.30

(
kg

sec

)

End Solution

10.13 The Table for Fanno Flow
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Table -10.1. Fanno Flow Standard basic Table k=1.4

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

U
U∗

T
T∗

0.03 787.08 36.5116 19.3005 30.4318 0.03286 1.1998

0.04 440.35 27.3817 14.4815 22.8254 0.04381 1.1996

0.05 280.02 21.9034 11.5914 18.2620 0.05476 1.1994

0.06 193.03 18.2508 9.6659 15.2200 0.06570 1.1991

0.07 140.66 15.6416 8.2915 13.0474 0.07664 1.1988

0.08 106.72 13.6843 7.2616 11.4182 0.08758 1.1985

0.09 83.4961 12.1618 6.4613 10.1512 0.09851 1.1981

0.10 66.9216 10.9435 5.8218 9.1378 0.10944 1.1976

0.20 14.5333 5.4554 2.9635 4.5826 0.21822 1.1905

0.25 8.4834 4.3546 2.4027 3.6742 0.27217 1.1852

0.30 5.2993 3.6191 2.0351 3.0702 0.32572 1.1788

0.35 3.4525 3.0922 1.7780 2.6400 0.37879 1.1713

0.40 2.3085 2.6958 1.5901 2.3184 0.43133 1.1628

0.45 1.5664 2.3865 1.4487 2.0693 0.48326 1.1533

0.50 1.0691 2.1381 1.3398 1.8708 0.53452 1.1429

0.55 0.72805 1.9341 1.2549 1.7092 0.58506 1.1315

0.60 0.49082 1.7634 1.1882 1.5753 0.63481 1.1194

0.65 0.32459 1.6183 1.1356 1.4626 0.68374 1.1065

0.70 0.20814 1.4935 1.0944 1.3665 0.73179 1.0929

0.75 0.12728 1.3848 1.0624 1.2838 0.77894 1.0787

0.80 0.07229 1.2893 1.0382 1.2119 0.82514 1.0638

0.85 0.03633 1.2047 1.0207 1.1489 0.87037 1.0485

0.90 0.01451 1.1291 1.0089 1.0934 0.91460 1.0327

0.95 0.00328 1.061 1.002 1.044 0.95781 1.017

1.00 0.0 1.00000 1.000 1.000 1.00 1.000
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Table -10.1. Fanno Flow Standard basic Table (continue)

M 4 f L
D

P
P∗

P0

P0
∗

ρ
ρ∗

U
U∗

T
T∗

2.00 0.30500 0.40825 1.688 0.61237 1.633 0.66667

3.00 0.52216 0.21822 4.235 0.50918 1.964 0.42857

4.00 0.63306 0.13363 10.72 0.46771 2.138 0.28571

5.00 0.69380 0.089443 25.00 0.44721 2.236 0.20000

6.00 0.72988 0.063758 53.18 0.43568 2.295 0.14634

7.00 0.75280 0.047619 1.0E+2 0.42857 2.333 0.11111

8.00 0.76819 0.036860 1.9E+2 0.42390 2.359 0.086957

9.00 0.77899 0.029348 3.3E+2 0.42066 2.377 0.069767

10.00 0.78683 0.023905 5.4E+2 0.41833 2.390 0.057143

20.00 0.81265 0.00609 1.5E+4 0.41079 2.434 0.014815

25.00 0.81582 0.00390 4.6E+4 0.40988 2.440 0.00952

30.00 0.81755 0.00271 1.1E+5 0.40938 2.443 0.00663

35.00 0.81860 0.00200 2.5E+5 0.40908 2.445 0.00488

40.00 0.81928 0.00153 4.8E+5 0.40889 2.446 0.00374

45.00 0.81975 0.00121 8.6E+5 0.40875 2.446 0.00296

50.00 0.82008 0.000979 1.5E+6 0.40866 2.447 0.00240

55.00 0.82033 0.000809 2.3E+6 0.40859 2.447 0.00198

60.00 0.82052 0.000680 3.6E+6 0.40853 2.448 0.00166

65.00 0.82066 0.000579 5.4E+6 0.40849 2.448 0.00142

70.00 0.82078 0.000500 7.8E+6 0.40846 2.448 0.00122

10.14 Appendix – Reynolds Number Effects

The friction factor in equation (10.24) was assumed constant. In Chapter 9 it was shown
that the Reynolds number remains constant for ideal gas fluid. However, in Fanno flow
the temperature does not remain constant. Hence, as it was discussed before, the
Reynolds number is increasing. Thus, the friction decreases with the exception of the
switch in the flow pattern (laminar to turbulent flow). For relatively large relative
roughness larger ε/D > 0.004 of 0.4% the friction factor is constant. For smoother
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Fig. -10.24. “Moody” diagram on the name of Moody who netscaped H. Rouse’s work to claim
as his own. In this section, the turbulent area is divided into 3 zones, constant, semi–constant,
and a linear After S Beck and R. Collins.

pipe ε/D < 0.001 and Reynolds number between 10,000 to a million the friction factor
vary between 0.007 to 0.003 with is about factor of two. Thus, the error of 4fL

D is
limited by a factor of two (2). For this range, the friction factor can be estimated as a
linear function of the log10(Re). The error in this assumption is probably small of the
assumption that involve in fanno flow model construction. Hence,

f = A log10(Re) + B (10.58)

Where the constant A and B are function of the relative roughness. For most practical
purposes the slope coefficient A can be further assumed constant. The slope coefficient
A = −0.998125. Thus, to carry this calculation relationship between the viscosity and
the temperature has to be established. If the viscosity expanded as Taylor or Maclaren
series then

µ

µ1
= A0 +

A1 T

T0
+ · · · (10.59)

Where µ1 is the viscosity at the entrance temperature T1.
Thus, Reynolds number is

Re =
D ρU

A0 + A1 T
T0

+ · · · (10.60)

Substituting equation (10.60) into equation (10.58) yield

f = A log10

(
D ρU

A0 + A1 T2
T1

+ · · ·

)
+ B (10.61)
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Left hand side of equation (10.24) is a function of the Mach number since it contains
the temperature. If the temperature functionality will not vary similarly to the case of
constant friction factor then the temperature can be expressed using equation (10.42).

4
D


A log10




constant︷ ︸︸ ︷
D ρ U

A0 + A1

1 + k−1
2 M1

2

1 + k−1
2 M2

2 + · · ·


 + B


 (10.62)

Equation (10.62) is only estimate of the functionally however, this estimate is almost
as good as the assumptions of Fanno flow. Equation (10.51) can be improved by using
equation (10.62)

4 Lmax

D


A log10




constant︷ ︸︸ ︷
D ρ U

A0 + A1

1 + k−1
2 M2

1 + k−1
2


 + B


 ∼ 1

k

1−M2

M2
+

k + 1
2k

ln
k+1
2 M2

1 + k−1
2 M2

(10.63)

In the most complicate case where the flow pattern is change from laminar flow to
turbulent flow the whole Fanno flow model is questionable and will produce poor results.

In summary, in the literature there are three approaches to this issue of non
constant friction factor. The friction potential is recommended by a researcher in
Germany and it is complicated. The second method substituting this physical approach
with numerical iteration. In the numerical iteration method, the expression of the
various relationships are inserted into governing differential equations. The numerical
methods does not allow flexibility and is very complicated. The methods described here
can be expended (if really really needed) and it will be done in very few iteration as it
was shown in the Isothermal Chapter.



CHAPTER 11

Rayleigh Flow

Rayleigh flow is a model describing a frictionless flow with heat transfer through a
pipe of constant cross sectional area. In practice, Rayleigh flow isn’t a really good
model to describe real situations. Yet, Rayleigh flow is practical and useful concept in
a obtaining trends and limits such as the density and pressure change due to external
cooling or heating. As opposed to the two previous models, the heat transfer can be in
two directions not like the friction (there is no negative friction). This fact creates a
different situation as compared to the previous two models. This model can be applied
to cases where the heat transfer is significant and the friction can be ignored. Flow of
steam in steam boiler is good examle where Rayleigh flow can be used.

11.1 Introduction

flow
direction

�1P1 �2P2T1 T2heat transfer
 (in and out)Q

Fig. -11.1. The control volume of Rayleigh
Flow.

The third simple model for 1–dimensional
flow with a constant heat transfer for fric-
tionless flow. This flow is referred to in
the literature as Rayleigh Flow (see histor-
ical notes). This flow is another extreme
case in which the friction effects are ne-
glected because their relative magnitute is
significantly smaller than the heat transfer
effects. While the isothermal flow model
has heat transfer and friction, the main
assumption was that relative length is en-
ables significant heat transfer to occur between the surroundings and tube. In contrast,
the heat transfer in Rayleigh flow occurs between unknown temperature and the tube
and the heat flux is maintained constant. As before, a simple model is built around the

289
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assumption of constant properties (poorer prediction to case where chemical reaction
take a place).

This model is used to roughly predict the conditions which occur mostly in sit-
uations involving chemical reaction. In analysis of the flow, one has to be aware that
properties do change significantly for a large range of temperatures. Yet, for smaller
range of temperatures and lengths the calculations are more accurate. Nevertheless,
the main characteristics of the flow such as a choking condition etc. are encapsulated
in this model.

The basic physics of the flow revolves around the fact that the gas is highly
compressible. The density changes through the heat transfer (temperature change).
Contrary to Fanno flow in which the resistance always oppose the flow direction, Rayleigh
flow, also, the cooling can be applied. The flow acceleration changes the direction when
the cooling is applied.

11.2 Governing Equations
The energy balance on the control volume reads

Q = Cp (T02 − T01) (11.1)

The momentum balance reads

A (P1 − P2) = ṁ (V2 − V1) (11.2)

The mass conservation reads

ρ1U1A = ρ2U2A = ṁ (11.3)

Equation of state

P1

ρ1 T1
=

P2

ρ2 T2
(11.4)

There are four equations with four unknowns, if the upstream conditions are known (or
downstream conditions are known). Thus, a solution can be obtained. One can notice
that equations (11.2), (11.3) and (11.4) are similar to the equations that were solved
for the shock wave. Thus, results in the same as before (6.16)

P2

P1
=

1 + k M1
2

1 + k M2
2

Pressure Ratio

(11.5)

The equation of state (11.4) can further assist in obtaining the temperature ratio as

T2

T1
=

P2

P1

ρ1

ρ2
(11.6)
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The density ratio can be expressed in terms of mass conservation as

ρ1

ρ2
=

U2

U1
=

U2√
k R T2

√
k R T2

U1√
k R T1

√
k R T1

=
M2

M1

√
T2

T1
(11.7)

or in simple terms as

ρ1

ρ2
=

U2

U1
=

M2

M1

√
T2

T1

Density Ratio

(11.8)

or substituting equations (11.5) and (11.8) into equation (11.6) yields

T2

T1
=

1 + k M1
2

1 + k M2
2

M2

M1

√
T2

T1
(11.9)

Transferring the temperature ratio to the left hand side and squaring the results gives

T2

T1
=

[
1 + k M1

2

1 + kM2
2

]2 (
M2

M1

)2

Temperature Ratio

(11.10)

P=P
⋆

constant Pressure line

M=1

M>1

M<1

M=
1
√

k

s

T

Fig. -11.2. The temperature entropy diagram for
Rayleigh line.

The Rayleigh line exhibits
two possible maximums one for
dT/ds = 0 and for ds/dT = 0.
The second maximum can be ex-
pressed as dT/ds = ∞. The sec-
ond law is used to find the expres-
sion for the derivative.

s1 − s2

Cp
= ln

T2

T1
− k − 1

k
ln

P2

P1

(11.11)

s1 − s2

Cp
= 2 ln

[
(

1 + k M1
2)

(1 + k M2
2)

M2

M1

]
+

k − 1
k

ln
[
1 + k M212

1 + k M1
2

]
Engropy Generation

(11.12)

Let the initial condition M1, and s1 be constant and the variable parameters are M2,
and s2. A derivative of equation (11.12) results in

1
Cp

ds

dM
=

2(1−M2)
M(1 + k M2)

(11.13)
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Taking the derivative of equation (11.13) and letting the variable parameters be T2,
and M2 results in

dT

dM
= constant× 1− k M2

(1 + k M2)3
(11.14)

Combining equations (11.13) and (11.14) by eliminating dM results in

dT

ds
= constant× M(1− kM2)

(1−M2)(1 + kM2)2
(11.15)

On T–s diagram a family of curves can be drawn for a given constant. Yet for every
curve, several observations can be generalized. The derivative is equal to zero when 1−
kM2 = 0 or M = 1/

√
k or when M → 0. The derivative is equal to infinity, dT/ds =

∞ when M = 1. From thermodynamics, increase of heating results in increase of
entropy. And cooling results in reduction of entropy. Hence, when cooling is applied
to a tube the velocity decreases and when heating is applied the velocity increases. At
peculiar point of M = 1/

√
k when additional heat is applied the temperature decreases.

The derivative is negative, dT/ds < 0, yet note this point is not the choking point. The
choking occurs only when M = 1 because it violates the second law. The transition to
supersonic flow occurs when the area changes, somewhat similarly to Fanno flow. Yet,
choking can be explained by the fact that increase of energy must be accompanied by
increase of entropy. But the entropy of supersonic flow is lower (see Figure 11.2) and
therefore it is not possible (the maximum entropy at M = 1.).

It is convenient to refer to the value of M = 1. These values are referred to as
the “star”1 values. The equation (11.5) can be written between choking point and any
point on the curve.

P ∗

P1
=

1 + k M1
2

1 + k

Pressure Ratio

(11.16)

The temperature ratio is

T ∗

T1
=

1
M2

(
1 + kM1

2

1 + k

)2

Pressure Ratio

(11.17)

The stagnation temperature can be expressed as

T01

T0
∗ =

T1

(
1 +

k − 1
2

M1
2

)

T ∗
(

1 + k

2

) (11.18)

1The star is an asterisk.
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or explicitly

T01

T0
∗ =

2 (1 + k)M1
2

(1 + k M2)2

(
1 +

k − 1
2

M1
2

)
Stagnation Temperature Ratio

(11.19)

The stagnation pressure ratio reads

P01

P0
∗ =

P1

(
1 + k−1

2 M1
2
)

P ∗
(

1+k
2

) (11.20)

or explicitly

P01

P0
∗ =

(
1 + k

1 + kM1
2

) (
1 + k M1

2

(1+k)
2

) k
k−1

Stagnation Pressure Ratio

(11.21)

11.3 Rayleigh Flow Tables
The “star” values are tabulated in Table 11.1. Several observations can be made in
regards to the stagnation temperature. The maximum temperature is not at Mach
equal to one. Yet the maximum enetropy accurs at Mach equal to one.

Table -11.1. Rayleigh Flow k=1.4

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.03 0.00517 0.00431 2.397 1.267 0.00216

0.04 0.00917 0.00765 2.395 1.266 0.00383

0.05 0.014300 0.011922 2.392 1.266 0.00598

0.06 0.020529 0.017119 2.388 1.265 0.00860

0.07 0.027841 0.023223 2.384 1.264 0.011680

0.08 0.036212 0.030215 2.379 1.262 0.015224

0.09 0.045616 0.038075 2.373 1.261 0.019222

0.10 0.056020 0.046777 2.367 1.259 0.023669

0.20 0.20661 0.17355 2.273 1.235 0.090909

0.25 0.30440 0.25684 2.207 1.218 0.13793

0.30 0.40887 0.34686 2.131 1.199 0.19183
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Table -11.1. Rayleigh Flow k=1.4 (continue)

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.35 0.51413 0.43894 2.049 1.178 0.25096

0.40 0.61515 0.52903 1.961 1.157 0.31373

0.45 0.70804 0.61393 1.870 1.135 0.37865

0.50 0.79012 0.69136 1.778 1.114 0.44444

0.55 0.85987 0.75991 1.686 1.094 0.51001

0.60 0.91670 0.81892 1.596 1.075 0.57447

0.65 0.96081 0.86833 1.508 1.058 0.63713

0.70 0.99290 0.90850 1.423 1.043 0.69751

0.75 1.014 0.94009 1.343 1.030 0.75524

0.80 1.025 0.96395 1.266 1.019 0.81013

0.85 1.029 0.98097 1.193 1.011 0.86204

0.90 1.025 0.99207 1.125 1.005 0.91097

0.95 1.015 0.99814 1.060 1.001 0.95693

1.0 1.00 1.00 1.00 1.00 1.000

1.1 0.96031 0.99392 0.89087 1.005 1.078

1.2 0.91185 0.97872 0.79576 1.019 1.146

1.3 0.85917 0.95798 0.71301 1.044 1.205

1.4 0.80539 0.93425 0.64103 1.078 1.256

1.5 0.75250 0.90928 0.57831 1.122 1.301

1.6 0.70174 0.88419 0.52356 1.176 1.340

1.7 0.65377 0.85971 0.47562 1.240 1.375

1.8 0.60894 0.83628 0.43353 1.316 1.405

1.9 0.56734 0.81414 0.39643 1.403 1.431

2.0 0.52893 0.79339 0.36364 1.503 1.455

2.1 0.49356 0.77406 0.33454 1.616 1.475
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Table -11.1. Rayleigh Flow k=1.4 (continue)

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

2.2 0.46106 0.75613 0.30864 1.743 1.494

2.3 0.43122 0.73954 0.28551 1.886 1.510

2.4 0.40384 0.72421 0.26478 2.045 1.525

2.5 0.37870 0.71006 0.24615 2.222 1.538

2.6 0.35561 0.69700 0.22936 2.418 1.550

2.7 0.33439 0.68494 0.21417 2.634 1.561

2.8 0.31486 0.67380 0.20040 2.873 1.571

2.9 0.29687 0.66350 0.18788 3.136 1.580

3.0 0.28028 0.65398 0.17647 3.424 1.588

3.5 0.21419 0.61580 0.13223 5.328 1.620

4.0 0.16831 0.58909 0.10256 8.227 1.641

4.5 0.13540 0.56982 0.081772 12.50 1.656

5.0 0.11111 0.55556 0.066667 18.63 1.667

5.5 0.092719 0.54473 0.055363 27.21 1.675

6.0 0.078487 0.53633 0.046693 38.95 1.681

6.5 0.067263 0.52970 0.039900 54.68 1.686

7.0 0.058264 0.52438 0.034483 75.41 1.690

7.5 0.050943 0.52004 0.030094 1.0E+2 1.693

8.0 0.044910 0.51647 0.026490 1.4E+2 1.695

8.5 0.039883 0.51349 0.023495 1.8E+2 1.698

9.0 0.035650 0.51098 0.020979 2.3E+2 1.699

9.5 0.032053 0.50885 0.018846 3.0E+2 1.701

10.0 0.028972 0.50702 0.017021 3.8E+2 1.702

20.0 0.00732 0.49415 0.00428 1.1E+4 1.711

25.0 0.00469 0.49259 0.00274 3.2E+4 1.712
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Table -11.1. Rayleigh Flow k=1.4 (continue)

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

30.0 0.00326 0.49174 0.00190 8.0E+4 1.713

35.0 0.00240 0.49122 0.00140 1.7E+5 1.713

40.0 0.00184 0.49089 0.00107 3.4E+5 1.714

45.0 0.00145 0.49066 0.000846 6.0E+5 1.714

50.0 0.00117 0.49050 0.000686 1.0E+6 1.714

55.0 0.000971 0.49037 0.000567 1.6E+6 1.714

60.0 0.000816 0.49028 0.000476 2.5E+6 1.714

65.0 0.000695 0.49021 0.000406 3.8E+6 1.714

70.0 0.000600 0.49015 0.000350 5.5E+6 1.714

The data is presented in Figure 11.3.

11.4 Examples For Rayleigh Flow

The typical questions that are raised in Rayleigh Flow are related to the maximum heat
that can be transferred to gas (reaction heat) and to the maximum flow rate.

Example 11.1:
Air enters a pipe with pressure of 3[bar] and temperature of 27◦C at Mach number of
M = 0.25. Due to internal combustion heat was released and the exit temperature was
found to be 127◦C. Calculate the exit Mach number, the exit pressure, the total exit
pressure, and heat released and transferred to the air. At what amount of energy the

exit temperature will start to decrease? Assume CP = 1.004
[

kJ
kg◦C

]

Solution

The entrance Mach number and the exit temperature are given and from Table (11.1)
or from Potto–GDC the initial ratio can be calculated. From the initial values the ratio
at the exit can be computed as the following.

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.25000 0.30440 0.25684 2.2069 1.2177 0.13793
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Fig. -11.3. The basic functions of Rayleigh Flow (k=1.4).

and
T2

T ∗
=

T1

T ∗
T2

T1
= 0.304× 400

300
= 0.4053

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.29831 0.40530 0.34376 2.1341 1.1992 0.18991

The exit Mach number is known, the exit pressure can be calculated as

P2 = P1
P ∗

P1

P2

P ∗
= 3× 1

2.2069
× 2.1341 = 2.901[Bar]

For the entrance, the stagnation values are
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M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.25000 0.98765 0.96942 2.4027 0.95745 2.3005 1.0424

The total exit pressure, P02 can be calculated as the following:

P02 = P1

isentropic︷︸︸︷
P01

P1

P0
∗

P01

P02

P0
∗ = 3× 1

0.95745
× 1

1.2177
× 1.1992 = 3.08572[Bar]

The heat released (heat transferred) can be calculated from obtaining the stagnation
temperature from both sides. The stagnation temperature at the entrance, T01

T01 = T1

isentropic︷︸︸︷
T01

T1
= 300/0.98765 = 303.75[K]

The isentropic conditions at the exit are

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.29831 0.98251 0.95686 2.0454 0.94012 1.9229 0.90103

The exit stagnation temperature is

T02 = T2

isentropic︷︸︸︷
T02

T2
= 400/0.98765 = 407.12[K]

The heat released becomes

Q

ṁ
= Cp (T02 − T01) 1× 1.004× (407.12− 303.75) = 103.78

[
kJ

seckg◦C

]

The maximum temperature occurs at the point where the Mach number reaches
1/
√

k and at this point the Rayleigh relationship are:

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.84515 1.0286 0.97959 1.2000 1.0116 0.85714

The maximum heat before the temperature can be calculated as following:

Tmax = T1
T ∗

T1

Tmax

T ∗
300

0.3044
× 1.0286 = 1013.7[K]

The isentropic relationships at the maximum energy are
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M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.84515 0.87500 0.71618 1.0221 0.62666 0.64051 0.53376

The stagnation temperature for this point is

T0max
= Tmax ∗ T0max

Tmax
=

1013.7
0.875

= 1158.51[K]

The maximum heat can be calculated as

Q

ṁ
= Cp (T0max

− T01) = 1× 1.004× (1158.51− 303.75) = 858.18
[

kJ

kgsecK

]

Note that this point isn’t the choking point. After this point additional heat results in
temperature reduction.

End Solution

Example 11.2:
Heat is added to the air until the flow is choked in amount of 600 [kJ/kg]. The exit
temperature is 1000 [K]. Calculate the entrance temperature and the entrance Mach
number.

Solution

The solution involves finding the stagnation temperature at the exit and subtracting the
heat (heat equation) to obtain the entrance stagnation temperature. From the Table
(11.1) or from the Potto-GDC the following ratios can be obtained.

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

1.0000 0.83333 0.63394 1.0000 0.52828 0.52828 0.52828

The stagnation temperature

T02 = T2
T02

T2
=

1000
0.83333

= 1200.0[K]

The entrance temperature is

T01

T02

= 1− Q/ṁ

T02CP
= 1200− 600

1200× 1.004
∼= 0.5016

It must be noted that T02 = T0
∗. Therefore with

T01
T0
∗ = 0.5016 either by using Table

(11.1) or by Potto-GDC the following is obtained
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M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.34398 0.50160 0.42789 2.0589 1.1805 0.24362

Thus, entrance Mach number is 0.38454 and the entrance temperature can be
calculated as following

T1 = T ∗
T1

T ∗
= 1000× 0.58463 = 584.6[K]

End Solution

The difference between the supersonic branch to subsonic branch

Example 11.3:
Air with Mach 3 enters a frictionless duct with heating. What is the maximum heat
that can be added so that there is no subsonic flow? If a shock occurs immediately at
the entrance, what is the maximum heat that can be added?

Solution

To achieve maximum heat transfer the exit Mach number has to be one, M2 = 1.

Q

ṁ
= Cp (T02 − T01) = CpT0

∗
(

1− T01

T0
∗

)

The table for M = 3 as follows

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

3.0000 0.28028 0.65398 0.17647 3.4245 1.5882

The higher the entrance stagnation temperature the larger the heat amount that
can be absorbed by the flow. In subsonic branch the Mach number after the shock is

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

3.0000 0.47519 2.6790 3.8571 10.3333 0.32834

With Mach number of M = 0.47519 the maximum heat transfer requires infor-
mation for Rayleigh flow as the following

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.33138 0.47519 0.40469 2.0802 1.1857 0.22844
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M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.47519 0.75086 0.65398 1.8235 1.1244 0.41176

It also must be noticed that stagnation temperature remains constant across shock
wave.

Q
ṁ

∣∣∣
subsonic

Q
ṁ

∣∣∣
supersonic

=

(
1− T01

T0
∗

)
subsonic(

1− T01
T0
∗

)
supersonic

=
1− 0.65398
1− 0.65398

= 1

It is not surprising for the shock wave to be found in the Rayleigh flow.
End Solution

Example 11.4:
One of the reason that Rayleigh flow model was invented is to be analyzed the flow in
a combustion chamber. Consider a flow of air in conduct with a fuel injected into the
flow as shown in Figure 11.4. Calculate

P1 = 15[Bar]

T1 = 350[K]

Fuel
injection

M1 = 0.3

Fig. -11.4. Schematic of the combustion
chamber.

what the maximum fuel–air ratio. Calcu-
late the exit condition for half the fuel–air
ratio. Assume that the mixture properties
are of air. Assume that the combustion
heat is 25,000[KJ/kg fuel] for the average
temperature range for this mixture. Ne-
glect the fuel mass addition and assume
that all the fuel is burned (neglect the com-
plications of the increase of the entropy if
accrue).

Solution

Under these assumptions, the maximum fuel air ratio is obtained when the flow is
choked. The entranced condition can be obtained using Potto-GDC as following

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.30000 0.40887 0.34686 2.1314 1.1985 0.19183

The choking condition are obtained using also by Potto-GDC as

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

And the isentropic relationships for Mach 0.3 are
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M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

0.30000 0.98232 0.95638 2.0351 0.93947 1.9119 0.89699

The maximum fuel-air can be obtained by finding the heat per unit mass.

Q̇

ṁ
=

Q

m
= Cp (T02 − T01) = CpT1

(
1− T01

T ∗

)

Q̇

ṁ
= 1.04× 350/0.98232× (1− 0.34686) ∼ 242.022[kJ/kg]

The fuel–air mass ratio has to be

mfuel

mair
=

needed heat

combustion heat
=

242.022
25, 000

∼ 0.0097[kg fuel/kg air]

If only half of the fuel is supplied then the exit temperature is

T02 =
Q

mCp
+ T01 =

0.5× 242.022
1.04

+ 350/0.98232 ∼ 472.656[K]

The exit Mach number can be determined from the exit stagnation temperature as
following:

T2

T ∗
=

T01

T0
∗

T02

T01

The last temperature ratio can be calculated from the value of the temperatures

T2

T ∗
= 0.34686× 472.656

350/0.98232
∼ 0.47685

The Mach number can be obtained from a Rayleigh table or using Potto-GDC

M T
T∗

T0

T0
∗

P
P∗

P0

P0
∗

ρ∗

ρ

0.33217 0.47685 0.40614 2.0789 1.1854 0.22938

It should be noted that this example is only to demonstrate how to carry the
calculations.

End Solution
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Evacuating and Filling a Semi Rigid
Chambers

Volume is a function of pressure  or rigid

Fanno model
for relatively short tube

Isothermal model
for relatively long tube

Volume forced models

(the volume can be also a function of inertia and etc)

Semi rigid tank

External forces controling  the  tank volume

V= f(t)

P
iston

Fanno model
for relatively short tube

V= f(P, etc)

Isothermal model
for relatively long tube

Fig. -12.1. The two different classifications of
models that explain the filling or evacuating of
a single chamber.

In some ways the next two Chapters con-
tain new materials to the traditional com-
pressible flow text books1. It was the un-
dersigned experience, that in traditional
classes for with compressible flow (some-
times referred to as gas dynamics) don’t
provide a demonstration to applicability
of the class material aside to aeronautical
spectrum even such as turbomachinery. In
this Chapter a discussion on application of
compressible flow to other fields like man-
ufacturing is presented2.

There is a significant importance
to the “pure” models such Isothermal flow
and Fanno flow which have immediate ap-
plicability. However, in many instances,
the situations, in life, are far more compli-
cate. Combination of gas compressibility in the chamber and flow out or through a

1After completion of these Chapters, the undersigned discover two text books which to include
some material related to this topic. These books are OCR, J. A., Fundamentals of Gas Dynamics, In-
ternational Textbook Co., Scranton, Pennsylvania, 1964. and “Compressible Fluid Flow,” 2nd Edition,
by M. A. Saad, Prentice Hall, 1985. However, these books contained only limit discussions on the
evacuation of chamber with attached nozzle.

2Even if the instructor feels that their students are convinced about the importance of the com-
pressible, this example can further strength and enhance this conviction.
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tube post a special interest and these next two Chapters are dealing with these topics.
In the first Chapter models, were the chamber volume is controlled or a function of the
pressure, are discussed. In the second Chapter, models, were the chamber’s volume is
a function of external forces, are presented (see Figure (12.1)).

12.1 Governing Equations and Assumptions

The process of filing or evacuating a semi flexible (semi rigid) chamber through a tube
is very common in engineering. For example, most car today equipped with an airbag.
For instance, the models in this Chapter are suitable for study of the filling the airbag
or filling bicycle with air. The analysis is extended to include a semi rigid tank. The
term semi rigid tank refers to a tank that the volume is either completely rigid or is a
function of the chamber’s pressure (or temperature).

As it was shown in this book, the most appropriate model for the flow in
the tube for a relatively fast situation is Fanno Flow. The Isothermal model is more
appropriate for cases where the tube is relatively long in–which a significant heat transfer
occurs keeping the temperature almost constant. As it was shown in Chapter (10) the
resistance, 4 f L

D , should be larger than 400. Yet, Isothermal flow model is used as the
limiting case.

Fanno model
for relatively short tube

V= f(P, etc)
Isothermal model
for relatively long tube

The connection is through a narrow passage

reduced
connection

1 2

(a) Reduced connection.

Fanno model
for relatively short tube

V= f(P, etc)

Isothermal model
for relatively long tube

The connection is direct

1 2

(b) Direct connections.

Fig. -12.2. Comparison direct and reduced connection. These two connection are two limits
of the possible connections.

The Rayleigh flow model requires that a constant heat transfer supplied either
by chemical reactions or otherwise. This author isn’t familiar with situations in which
Rayleigh flow model is applicable. And therefore, at this stage, no discussion is offered
here.

Fanno flow model is the most appropriate in the case where the filling and
evacuating is relatively fast. In case the filling is relatively slow (long 4 f L

D than the
Isothermal flow is appropriate model. Yet as it was stated before, here Isothermal flow
and Fanno flow are used as limiting or bounding cases for the real flow. Additionally,
the process in the chamber can be limited or bounded between two limits of Isentropic
process or Isothermal process.

In this analysis, in order to obtain the essence of the process, some simplified
assumptions are made. The assumptions can be relaxed or removed and the model will
be more general. Of course, the payment is by far more complex model that sometime
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V= f(P, etc) mout

(a) Reduced connection.

V= f(P, etc) min

(b) Direct connections.

Fig. -12.3. Comparison direct and reduced connection. These two connection are two limits
of the possible connections.

clutter the physics. First, a model based on Fanno flow model is constructed. Second,
model is studied in which the flow in the tube is isothermal. The flow in the tube in
many cases is somewhere between the Fanno flow model to Isothermal flow model. This
reality is an additional reason for the construction of two models in which they can be
compared.

Effects such as chemical reactions (or condensation/evaporation) are neglected.
There are two suggested itself possibilities or limits to the connection between the tube
to the tank (see the Figure 12.3): one) direct two) through a reduction. The direct
connection is when the tube is connect straight or directly to tank like in a case where
pipe is welded into the tank. The reduction is typical when a ball is filled trough an
one–way valve (filling a baseball ball, also in manufacturing processes3). The second
possibility leads itself to an additional parameter that is independent of the resistance.
The first kind connection tied the resistance, 4 f L

D , with the tube area.

The simplest model for gas inside the chamber as a first approximation is the
isotropic model. It is assumed that kinetic change in the chamber is negligible. This
assumption is more suitable for expansion. Therefore, the pressure in the chamber is
equal to the stagnation pressure, P ≈ P0 (see Figure (12.4)). Thus, the stagnation
pressure at the tube’s entrance is the same as the pressure in the chamber. It is further
can be extended that for a constant compression (constant piston velocity) is also
appropriate since the initial shock just change the stagnation temperature and pressure
by fix amount. More about this point later.

P≈P0

2
U≈0

P1≈P

1

Fig. -12.4. The pressure assumptions in the
chamber and tube entrance.

The mass in the chamber and
mass flow out are expressed in terms of
the chamber variables (see Figure 12.4).
The mass in the tank for perfect gas reads

dm

dt
− ṁout = 0 (12.1)

And for perfect gas the mass at any given

3For example, in die casting process there is planned reduction to make sure the excess is break at
that point.
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time is

m =
P (t)V (t)
R T (t)

(12.2)

The mass flow out is a function of the resistance in tube, 4 f L
D and the pressure difference

between the two sides of the tube ṁout(4 f L
D , P1/P2). The initial conditions in the

chamber are T (0), P (0) and etc. If the mass occupied in the tube is neglected (only
for filling process) the most general equation ideal gas (12.1) reads

d

dt

m︷ ︸︸ ︷(
P V

R T

)
±

ṁout︷ ︸︸ ︷

ρ1A

U︷ ︸︸ ︷
c1M1(

4fL

D
,
P2

P1
) = 0 (12.3)

When the plus sign is for filling process and the negative sign is for evacuating process.

12.2 General Model and Non–Dimensionalization
It is convenient to non–dimensioned the properties in chamber by dividing them by their
initial conditions. The dimensionless properties of chamber as

T =
T (t = t)
T (t = 0)

(12.4a)

V =
V (t = t)
V (t = 0)

(12.4b)

P =
P (t = t)
P (t = 0)

(12.4c)

t =
t

tc
(12.4d)

where tc is the characteristic time of the system defined as followed

tc =
V (0)

AMmax

√
k R T (0))

(12.5)

The physical meaning of characteristic time, tc is the time which will take to evacuate
the chamber if the gas in the chamber was in its initial state, the flow rate was at its
maximum (choking flow), and the gas was incompressible in the chamber.

Utilizing these definitions (12.4) and substituting into equation (12.3) yields

P (0)V (0)
tc R T (0)

d

dt

(
P V

T

)
±

ρ︷ ︸︸ ︷
P 1

R T 1

P (0)
T (0)

A

c(t)︷ ︸︸ ︷√
k RT 1T (0)MmaxM(t) = 0 (12.6)
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where the following definition for the reduced Mach number is added as

M =
M1(t)
Mmax

(12.7)

After some rearranging equation (12.6) obtains the form

d

dt

(
PV

T

)
± tc AMmax

√
k R T (0)

V (0)
P1 M1√

T1

M = 0 (12.8)

and utilizing the definition of characteristic time, equation (12.5), and substituting into
equation (12.8) yields

d

dt

(
P V

T

)
± P1 M√

T1

= 0 (12.9)

Note that equation (12.9) can be modified by introducing additional parameter
which referred to as external time, tmax

4. For cases, where the process time is important
parameter equation (12.9) transformed to

d

dt̃

(
P V

T

)
± tmax

tc

P1 M√
T1

= 0

Governing Equation

(12.10)

when P , V , T , and M are all are function of t̃ in this case. And where t̃ = t/tmax.
It is more convenient to deal with the stagnation pressure then the actual

pressure at the entrance to the tube. Utilizing the equations developed in Chapter 5
between the stagnation condition, denoted without subscript, and condition in a tube

denoted with subscript 1. The ratio of P1√
T1

is substituted by

P1√
T1

=
P√
T

[
1 +

k − 1
2

M2

]−(k+1)
2 (k−1)

(12.11)

It is convenient to denote

f [M ] =
[
1 +

k − 1
2

M2

]−(k+1)
2 (k−1)

(12.12)

Note that f [M ] is a function of the time. Utilizing the definitions (12.11) and substi-
tuting equation (12.12) into equation (12.9) to be transformed into

d

dt

(
P V

T

)
± P M(t) f [M ]√

T
= 0 (12.13)

4This notation is used in many industrial processes where time of process referred to sometime as
the maximum time.
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Equation (12.13) is a first order nonlinear differential equation that can be solved for
different initial conditions. At this stage, the author isn’t aware any a general solution
for this equation5. Nevertheless, many numerical methods are available to solve this
equation.

12.2.1 Isentropic Process

The relationship between the pressure and the temperature in the chamber can be
approximated as isotropic and therefore

T =
T (t)
T (0)

=
[

P (t)
P (0)

]k−1
k

= P
k−1

k (12.14)

The ratios can be expressed in term of the reduced pressure as followed:

P

T
=

P

P
k−1

k

= P
1
k (12.15)

and

P√
T

= P
k+1
2 k (12.16)

Equation (12.13) is simplified into three different forms:

d

dt

(
V P

1
k

)
± P

k+1
2 k M (t) f [M ] = 0 (12.17a)

1
k

P

1− k

k
dP

dt
V + P

1
k

dV

dt
± P

k+1
2 k M(t)f [M ] = 0 (12.17b)

V
dP

dt
+ kP

dV

dt
± kP

3 k−1
2 k M(t)f [M ] = 0 (12.17c)

Equation (12.17) is a general equation for evacuating or filling for isentropic process
in the chamber. It should be point out that, in this stage, the model in the tube could
be either Fanno flow or Isothermal flow. The situations where the chamber undergoes
isentropic process but the flow in the tube is Isothermal are limited. Nevertheless, the
application of this model provide some kind of a limit where to expect when some heat
transfer occurs. Note the temperature in the tube entrance can be above or below
the surrounding temperature. Simplified calculations of the entrance Mach number are
described in the advance topics section.

5To those mathematically included, find the general solution for this equation.
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12.2.2 Isothermal Process in The Chamber

12.2.3 A Note on the Entrance Mach number

The value of Mach number, M1 is a function of the resistance, 4 f L
D and the ratio of

pressure in the tank to the back pressure, PB/P1. The exit pressure, P2 is different
from PB in some situations. As it was shown before, once the flow became choked
the Mach number, M1 is only a function of the resistance, 4fL

D . These statements are
correct for both Fanno flow and the Isothermal flow models. The method outlined in
Chapters 9 and 10 is appropriate for solving for entrance Mach number, M1.

Two equations must be solved for the Mach numbers at the duct entrance and
exit when the flow is in a chokeless condition. These equations are combinations of the
momentum and energy equations in terms of the Mach numbers. The characteristic
equations for Fanno flow (10.51), are

4fL

D
=

[
4fL

D

∣∣∣∣
max

]

1

−
[

4fL

D

∣∣∣∣
max

]

2

(12.18)

and

P2

P0(t)
=

[
1 +

k − 1
2

M2
2

] k
1−k M1

M2

√√√√√√√√




1 +
k − 1

2
M2

2

1 +
k − 1

2
M1

2




k + 1
k − 1

(12.19)

where 4 f L
D is defined by equation (10.50).

The solution of equations (12.18) and (12.19) for given 4fL
D and Pexit

P0(t)
yields

the entrance and exit Mach numbers. See advance topic about approximate solution
for large resistance, 4 f L

D or small entrance Mach number, M1.

12.3 Rigid Tank with A Nozzle

The most simplest possible combination is discussed here before going trough the more
complex cases A chamber is filled or evacuated by a nozzle. The gas in the chamber
assumed to go an isentropic processes and flow is bounded in nozzle between isentropic
flow and isothermal flow6. Here, it also will be assumed that the flow in the nozzle is
either adiabatic or isothermal.

6This work is suggested by Donald Katze the point out that this issue appeared in Shapiro’s Book
Vol 1, Chapter 4, p. 111 as a question 4.31.
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12.3.1 Adiabatic Isentropic Nozzle Attached

The mass flow out is given by either by Fliegner’s equation (5.45) or simply use cM ρ A∗

and equation (12.17) becomes

1
k

P
1−k

k
dP

dt
± P

k+1
2 k (t)f [M ] = 0 (12.20)

It was utilized that V = 1 and M definition is simplified as M = 1. It can be noticed
that the characteristic time defined in equation (12.5) reduced into:

tc =
V (0)

A
√

k R T (0)
(12.21)

Also it can be noticed that equation (12.12) simplified into

f [M ] =
[
1 +

k − 1
2

12

]−(k+1)
2(k−1)

=
(

k + 1
2

)−(k+1)
2 (k−1)

(12.22)

Equation (12.20) can be simplified as

1
k

(
P

1−k
2 k

)
dP ± f [m] dt = 0 (12.23)

Equation (12.23) can be integrated as

∫ P

1

P
1−k
2 k dP ±

∫ t

0

dt = 0 (12.24)

The integration limits are obtained by simply using the definitions of reduced pressure,
at P (t = 0) = 1 and P (t = t) = P . After the integration, equation (12.24) and
rearrangement becomes

P =
[
1±

(
k − 1

2

)
f [M ]t

] 2 k
1−k

(12.25)

Example 12.1:
A chamber is connected to a main line with pressure line with a diaphragm and nozzle.
The initial pressure at the chamber is 1.5[Bar] and the volume is 1.0[m3]. Calculate
time it requires that the pressure to reach 5[Bar] for two different nozzles throat area of
0.001, and 0.1 [m2] when diaphragm is erupted. Assumed the stagnation temperature
at the main line is the ambient of 27[◦C].

Solution

The characteristic time is

tmax =
V

A∗ c
=

V

A∗c
=

1.0
0.1
√

1.4× 287× 300
= 0.028[sec] (12.26)
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And for smaller area

tmax =
1.0

0.001
√

1.4× 287× 300
= 2.8[sec]

P =
P (t)
P (0)

=
4.5
1.5

= 3.0

The time is

t = tmax

[
P

1−k
k − 1

](
k + 1

2

)−()

(12.27)

Substituting values into equation (12.27) results

t = 0.028
[
3

1−1.4
2.8 − 1

] (
2.4
2

)−2.4
0.8

= 0.013[sec] (12.28)

End Solution

Filling/Evacuating The Chamber Under choked Condition

The flow in the nozzle can became unchoked and it can be analytically solved. Owczarek
[1964] found an analytical solution which described here.

12.3.2 Isothermal Nozzle Attached

In this case the process in nozzle is assumed to isothermal but the process in the chamber
is isentropic. The temperature in the nozzle is changing because the temperature in the
chamber is changing. Yet, the differential temperature change in the chamber is slower
than the temperature change in nozzle. For rigid volume, V = 1 and for isothermal
nozzle T = 1 Thus, equation (12.13) is reduced into

dP

dt
= ±f [M ]P = 0 (12.29)

Separating the variables and rearranging equation (12.29) converted into

∫ P

1

dP

P
± f [M ]

∫ t

0

dt = 0 (12.30)

Here, f [M ] is expressed by equation (12.22). After the integration, equation (12.30)
transformed into

ln P =
(

k + 1
2

)−(k+1)
2(k−1)

t

P = e

"
( k+1

2 )
−(k+1)
2(k−1) t

#

(12.31)
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12.4 Rapid evacuating of a rigid tank

12.4.1 Assuming Fanno Flow Model

The relative Volume, V (t) = 1, is constant and equal one for a completely rigid tank.
In such case, the general equation (12.17) “shrinks” and doesn’t contain the relative
volume term.

A reasonable model for the tank is isentropic (can be replaced polytropic relation-
ship) and Fanno flow are assumed for the flow in the tube. Thus, the specific governing
equation is

dP

dt
− kMf [M ]P

3 k−1
2 k = 0 (12.32)

For a choked flow the entrance Mach number to the tube is at its maximum, Mmax

and therefore M = 1. The solution of equation (12.32) is obtained by noticing that M
is not a function of time and by variables separation results in

∫ t

0

dt =
∫ P

1

dP

kMf [M ]P
3 k−1
2 k

=
1

kMf [M ]

∫ P

1

P
1−3 k
2 k dP (12.33)

direct integration of equation (12.33) results in

t =
2

(k − 1)M f [M ]

[
P

1−k
2 k − 1

]
(12.34)

It has to be realized that this is “reversed” function i.e. t is a function of P and
can be reversed for case. But for the chocked case it appears as

P =
[
1 +

(k − 1)Mf [M ]
2

t

] 2 k
1−k

(12.35)

The function is drawn as shown here in Figure (12.5).
The Figure (12.5) shows that when the modified reduced pressure equal to one

the reduced time is zero. The reduced time increases with decrease of the pressure in
the tank.

At certain point the flow becomes chokeless flow (unless the back pressure is
complete vacuum). The transition point is denoted here as chT . Thus, equation
(12.34) has to include the entrance Mach under the integration sign as

t− tchT =
∫ P

PchT

1
kMf [M ]

P
1−3 k
2 k dP (12.36)

For practical purposes if the flow is choked for more than 30% of the characteristic
time the choking equation can be used for the whole range, unless extra long time or
extra low pressure is calculated/needed. Further, when the flow became chokeless the
entrance Mach number does not change much from the choking condition.
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V(t) = P (t)

V(t) = P (0)

P(t)

t̄

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

Fig. -12.5. The reduced time as a function of the modified reduced pressure

Again, for the special cases where the choked equation is not applicable the
integration has to be separated into zones: choked and chokeless flow regions. And in
the choke region the calculations can use the choking formula and numerical calculations
for the rest.

Example 12.2:
A chamber with volume of 0.1[m3] is filled with air at pressure of 10[Bar]. The chamber
is connected with a rubber tube with f = 0.025, d = 0.01[m] and length of L = 5.0[m]

Solution

The first parameter that calculated is 4 f L
D = 5
End Solution

12.4.2 Filling Process

The governing equation is

dP

dt
− kMf [M ]P

3 k−1
2 k = 0 (12.37)

For a choked flow the entrance Mach number to the tube is at its maximum, Mmax

and therefore M = 1. The solution of equation (12.37) is obtained by noticing that M
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is not a function of time and by variable separation results in
∫ t

0

dt =
∫ P

1

dP

kMf [M ]P
3 k−1
2 k

=
1

kMf [M ]

∫ P

1

P
1−3 k
2 k dP (12.38)

direct integration of equation (12.38) results in

t =
2

(k − 1)Mf [M ]

[
P

1−k
2 k − 1

]
(12.39)

It has to be realized that this is a reversed function. Nevertheless, with today
computer this should not be a problem and easily can be drawn as shown here in Figure
(12.5). The Figure shows that when the modified reduced pressure equal to one the

(k � 1)f [Mmax℄2 �P

�t

(k + 1)(3k � 1)f [Mmax℄2k2 �Por

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
V(t) = P(t)
V(t) = V(0)

Fig. -12.6. The reduced time as a function of the modified reduced pressure

reduced time is zero. The reduced time increases with decrease of the pressure in the
tank.

At some point the flow becomes chokeless flow (unless the back pressure is a
complete vacuum). The transition point is denoted here as chT . Thus, equation
(12.39) has to include the entrance Mach under the integration sign as

t− tchT =
∫ P

PchT

1
kMf [M ]

P
1−3 k
2 k dP (12.40)

12.4.3 The Isothermal Process

For Isothermal process, the relative temperature, T = 1. The combination of the
isentropic tank and Isothermal flow in the tube is different from Fanno flow in that the
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chocking condition occurs at 1/
√

k. This model is reasonably appropriated when the
chamber is insulated and not flat while the tube is relatively long and the process is
relatively long.

It has to be remembered that the chamber can undergo isothermal process. For
the double isothermal (chamber and tube) the equation (12.6) reduced into

P (0)V (0)
tcRT (0)

d
(
PV

)

dt
±

ρ︷ ︸︸ ︷
P 1

R

P (0)
T (0)

A

c(0)︷ ︸︸ ︷√
k R T (0)MmaxM(t) = 0 (12.41)

12.4.4 Simple Semi Rigid Chamber

A simple relation of semi rigid chamber when the volume of the chamber is linearly
related to the pressure as

V (t) = aP (t) (12.42)

where a is a constant that represent the physics. This situation occurs at least in small
ranges for airbag balloon etc. The physical explanation when it occurs beyond the scope
of this book. Nevertheless, a general solution is easily can be obtained similarly to rigid
tank. Substituting equation (12.42) into yields

d

dt

(
P

1+k
k

)
− P

k+1
2 k M f [M ] = 0 (12.43)

Carrying differentiation result in

1 + k

k
P

1
k

dP

dt
− P

k+1
2 k Mf [M ] = 0 (12.44)

Similarly as before, the variables are separated as

∫ t

0

dt =
k

1 + k

∫ P

1

P
k−1
2 k dP

Mf [M ]
(12.45)

The equation (12.45) integrated to obtain the form

t =
2 k2

Mf [M ](3 k − 1)(1 + k)

[
1− P

3 k−1
2 k

]
(12.46)

The physical meaning that the pressure remains larger thorough evacuating process, as
results in faster reduction of the gas from the chamber.

12.4.5 The “Simple” General Case

The relationship between the pressure and the volume from the physical point of view
must be monotonous. Further, the relation must be also positive, increase of the
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pressure results in increase of the volume (as results of Hook’s law. After all, in the
known situations to this author pressure increase results in volume decrease (at least
for ideal gas.).

In this analysis and previous analysis the initial effect of the chamber container
inertia is neglected. The analysis is based only on the mass conservation and if unsteady
effects are required more terms (physical quantities) have taken into account. Further,
it is assumed the ideal gas applied to the gas and this assumption isn’t relaxed here.

Any continuous positive monotonic function can be expressed into a polynomial
function. However, as first approximation and simplified approach can be done by a
single term with a different power as

V (t) = aPn (12.47)

When n can be any positive value including zero, 0. The physical meaning of n = 0
is that the tank is rigid. In reality the value of n lays between zero to one. When n is
approaching to zero the chamber is approaches to a rigid tank and vis versa when the
n → 1 the chamber is flexible like a balloon.

There isn’t a real critical value to n. Yet, it is convenient for engineers to fur-
ther study the point where the relationship between the reduced time and the reduced
pressure are linear7 Value of n above it will Convex and below it concave.

d

dt

(
P

1+nk−k
k

)
− P

k+1
2 k Mf [M ] = 0 (12.48)

Notice that when n = 1 equation (12.49) reduced to equation (12.43).
After carrying–out differentiation results

1 + nk − k

k
P

1+nk−2 k
k

dP

dt
− P

k+1
2 k Mf [M ] = 0 (12.49)

Again, similarly as before, variables are separated and integrated as follows

∫ t

0

dt =
1 + nk − k

k

∫ P

1

P
1+2nk−5 k

2 k dP

Mf [M ]
(12.50)

Carrying–out the integration for the initial part if exit results in

t =
2 k2

Mf [M ](3 k − 2nk − 1)(1 + k)

[
1− P

3 k−2nk−1
2 k

]
(12.51)

The linear condition are obtain when

3 k − 2nk − 1 = 1 −→ n =
3 k − 2

2 k
(12.52)

That is just bellow 1 (n = 0.785714286) for k = 1.4.

7Some suggested this border point as infinite evocation to infinite time for evacuation etc. This
undersigned is not aware situation where this indeed play important role. Therefore, it is waited to find
such conditions before calling it as critical condition.
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12.5 Advance Topics

The term 4fL
D is very large for small values of the entrance Mach number which requires

keeping many digits in the calculation. For small values of the Mach numbers, equation
(12.18) can be approximated as

4 f L

D
=

1
k

Mexit
2 −Min

2

Mexit
2Min

2 (12.53)

and equation (12.19) as

Pexit

P0(t)
=

Min

Mexit
. (12.54)

The solution of two equations (12.53) and (12.54) yields

Min =

√√√√√1−
[

Pexit

P0(t)

]2

k 4 f L
D

(12.55)

This solution should used only for Min < 0.00286; otherwise equations (12.18) and
(12.19) must be solved numerically8.

The solution of equation (12.18) and (12.19) is described in “Pressure die casting:
a model of vacuum pumping” Bar-Meir, G; Eckert, E R G; Goldstein, R. J. Journal of
Manufacturing Science and Engineering (USA). Vol. 118, no. 2, pp. 259-265. May
1996.

12.6 Remark on Real Gases
In the above discussion was dealing with ideal gas9. The real gas equation is used in
some situations to describe situations were the deviations from the ideal gas model are
significant. The equation of the state is than (see equation (2.39))

z =
P

ρR T
(12.56)

The mass in the chamber is

m =
P (t)V (t)
R z(t)T (t)

(12.57)

Thus the change with respect to time for the mass in the chamber is

dm

dt
=

1
R

(
d

dt

(
P (t)V (t)

T (t)

)
1

z(t)
− 1

z2

(
dz

dρ

dρ

dt
+

dz

dP

dP

dt
+

dz

dT

dT

dt

))
(12.58)

8When the accuracy is less significant but speed is important it range can be increased
9This point was raised by several people in Henry Foust from Texas, John McReaimie from Canada

and Xunfei Zhou from Xian Jiaotong University China
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The flow out using equation (4.37) is

ṁout = Ac M ρ = A
√

z nR T (12.59)

The process is assumed to be isentropic hence equation (4.36) represent the relationship

(
ρ1

ρ0

)n

=
P1

P0
(12.60)

Also the relationship density and the temperature is

(
ρ1

ρ0

)n−1

=
z1 T1

z0 T0
(12.61)

and relationship between the pressure and temperature is

(
P1

P0

)1−n

=
z0 T0

z1 T1
(12.62)

With the terms that were developed earlier such equation (5.155) provide the
based to build the model for real gases.



CHAPTER 13

Evacuating/Filing Chambers under
External Volume Control

This chapter is the second on the section dealing with filling and evacuating chambers.
Here the model deals with the case where the volume is controlled by external forces.
This kind of model is applicable to many manufacturing processes such as die casting,
extraction etc. In general the process of the displacing the gas (in many cases air) with
a liquid is a very common process. For example, in die casting process liquid metal is
injected to a cavity and after the cooling/solidification period a part is obtained in near
the final shape. One can also view the exhaust systems of internal combustion engine
in the same manner. In these processes, sometime is vital to obtain a proper evacuation
of the gas (air) from the cavity.

13.1 General Model

In this analysis, in order to obtain the essence of the process, some simplified assump-
tions are made. It simplest model of such process is when a piston is displacing the gas
though a long tube. It assumed that no chemical reaction (or condensation/evaporation)
occur in the piston or the tube 1. It is further assumed that the process is relatively
fast. The last assumption is a appropriate assumption in process such as die casting.

Two extreme possibilities again suggest themselves: rapid and slow processes.
The two different connections, direct and through reduced area are combined in this
analysis.

1such reaction are possible and expected to be part of process but the complicates the analysis and
do not contribute to understand to the compressibility effects.
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13.1.1 Rapid Process

V = f(t)

Fanno model

isentropic process 1 2

Fig. -13.1. The control volume of the “Cylin-
der.”

Clearly under the assumption of rapid pro-
cess the heat transfer can be neglected and
Fanno flow can be assumed for the tube.
The first approximation isotropic process
describe the process inside the cylinder
(see Figure 13.1).

Before introducing the steps of
the analysis, it is noteworthy to think
about the process in qualitative terms.
The replacing incompressible liquid enter in the same amount as replaced incompress-
ible liquid. But in a compressible substance the situation can be totally different, it is
possible to obtain a situation where that most of the liquid entered the chamber and
yet most of the replaced gas can be still be in the chamber. Obtaining conditions where
the volume of displacing liquid is equal to the displaced liquid are called the critical
conditions. These critical conditions are very significant that they provide guidelines for
the design of processes.

Obviously, the best ventilation is achieved with a large tube or area. In manu-
facture processes to minimize cost and the secondary machining such as trimming and
other issues the exit area or tube has to be narrow as possible. In the exhaust system
cost of large exhaust valve increase with the size and in addition reduces the strength
with the size of valve2. For these reasons the optimum size is desired. The conflicting
requirements suggest an optimum area, which is also indicated by experimental studies
and utilized by practiced engineers.

The purpose of this analysis to yield a formula for critical/optimum vent area
in a simple form. The second objective is to provide a tool to “combine” the actual
tube with the resistance in the tube, thus, eliminating the need for calculations of the
gas flow in the tube to minimize the numerical calculations.

A linear function is the simplest model that decibels changes the volume. Later
a discussion on the non-linear functions on effect of the linear function. In reality, in
some situations like die casting this description is appropriate. Nevertheless, this model
can be extended numerical in cases where more complex function is applied.

V (t) = V (0)
[
1− t

tmax

]
(13.1)

Equation (13.1) can be non–dimensionlassed as

V (t) = 1− t (13.2)

The governing equation (12.10) which was developed in the previous Chapter

2After certain sizes, the possibility of crack increases.
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12 obtained the form as

[
P

] 1
k

{
1
k

V

P

dP

dt
+

dV

dt

}
+

tmax M f(M)
tc

[
P

]k+1
2 k = 0

Piston Continuity

(13.3)

where t = t/tmax. Notice that in this case that there are two different characteristic
times: the “characteristic” time, tc and the “maximum” time, tmax. The first charac-
teristic time, tc is associated with or related to the ratio of the volume and the tube
characteristics (see equation (12.5)). The second characteristic time, tmax is associated
with the imposed time on the system (in this case the elapsed time of the piston stroke)
or the time to cycle period for repetitive process.

Equation (13.3) is an nonlinear first order differential equation and can be
rearranged as follows

dP

k

(
1− tmax

tc
M f [M ]P

k−1
2 k

)
P

=
dt

1− t
; P (0) = 1. (13.4)

Equation (13.4) is can be solved only when the flow is chocked. In which case, f [m]
isn’t function of the time.

The solution of equation (13.4)) can be obtained by transforming and by in-

troducing a new variable ξ = P
k−1
2 k and therefore P = [ξ]

2 k
k−1 . The reduced Pressure

derivative, dP = 2 k
k−1 [ξ](

2 k
k−1 )−1

dξ Utilizing this definition and there implication reduce
equation (13.4)

2 [ξ]

„
2 k

k−1

«
−1

dξ

(k − 1) (1−Bξ) [ξ]
2 k

k−1

=
dt

1− t
(13.5)

where B = tmax

tc
M f [M ] And equation (13.5) can be further simplified as

2 dξ

(k − 1) (1−Bξ) ξ
=

dt

1− t
(13.6)

Equation (13.6) can be integrated to obtain

2
(k − 1)B

ln
∣∣∣∣
1−B ξ

ξ

∣∣∣∣ = − ln t (13.7)

or in a different form

∣∣∣∣
1−Bξ

ξ

∣∣∣∣
2

(1−k) B
= t (13.8)
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Now substituting to the “preferred” variable




1− tmax

tc
M f [M ] P

k−1
2 k

P
k−1
2 k




2
(1− k) tmax

tc
M f [M ]

∣∣∣∣∣∣∣∣∣∣∣∣

1

P

= t (13.9)

The analytical solution is applicable only in the case which the flow is choked thor-
ough all the process. The solution is applicable to indirect connection. This happen
when vacuum is applied outside the tube (a technique used in die casting and injection
molding to improve quality by reducing porosity.). In case when the flow chokeless
a numerical integration needed to be performed. In the literature, to create a direct
function equation (13.4) is transformed into

dP

dt
=

k

(
1− tmax

tc
Mf [M ]P

k−1
2 k

)

1− t
(13.10)

with the initial condition of

P (0) = 1 (13.11)

The analytical solution also can be approximated by a simpler equation as

P = [1− t]
tmax

tc (13.12)

The results for numerical evaluation in the case when cylinder is initially at an atmo-
spheric pressure and outside tube is also at atmospheric pressure are presented in Figure
13.2. In this case only some part of the flow is choked (the later part). The results
of a choked case are presented in Figure (13.3) in which outside tube condition is in
vacuum. These Figures 13.2 and 13.3 demonstrate the importance of the ratio of tmax

tc
.

When tmax

tc
> 1 the pressure increases significantly and verse versa.

Thus, the question remains, how the time ratio can be transferred to parameters
that can the engineer can design in the system.

Denoting the area that creates the ratio tmax

tc
= 1 as the critical area, Ac

provides the needed tool. Thus the exit area, A can be expressed as

A =
A

Ac
Ac (13.13)

The actual times ratio tmax

tc

∣∣∣
@A

can be expressed as

tmax

tc

∣∣∣∣
@A

=
tmax

tc

∣∣∣∣
@A

1︷ ︸︸ ︷
tmax

tc

∣∣∣∣
@Ac

(13.14)
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According to equation (12.5) tc is inversely proportional to area, tc ∝ 1/A. Thus,
equation (13.14) the tmax is canceled and reduced into

tmax

tc

∣∣∣∣
@A

=
A

Ac
(13.15)

Parameters influencing the process are the area ratio, A
Ac

, and the friction

parameter, 4 f L
D . From other detailed calculations the author’s thesis (later to be

published at this site: www.potto.org). it was found that the influence of the parameter
4Flo

D on the pressure development in the cylinder is quite small. The influence is small
on the residual air mass in the cylinder but larger on the Mach number, Mexit. The
effects of the area ratio, A

Ac
, are studied here since it is the dominant parameter.

It is important to point out the significance of the tmax

tc
. This parameter

represents the ratio between the filling time and the evacuating time, the time which
would be required to evacuate the cylinder for constant mass flow rate at the maximum
Mach number when the gas temperature and pressure remain in their initial values.
This parameter also represents the dimensionless area, A

Ac
, according to the following

equation
Figure 13.4 describes the pressure as a function of the dimensionless time for

various values of A
Ac

. The line that represents A
Ac

= 1 is almost straight.

For large values of A
Ac

the pressure increases the volume flow rate of the air
until a quasi steady state is reached. This quasi steady state is achieved when the
volumetric air flow rate out is equal to the volume pushed by the piston. The pressure
and the mass flow rate are maintained constant after this state is reached. The pressure
in this quasi steady state is a function of A

Ac
. For small values of A

Ac
there is no steady

state stage. When A
Ac

is greater than one the pressure is concave upward and when A
Ac

is less than one the pressure is concave downward as shown in Figures (13.4), which
was obtained by an integration of equation (13.9).

13.1.2 Examples

Example 13.1:
Calculate the minimum required vent area for die casting process when the die volume
is 0.001[m3] and 4 f L

D = 20. The required solidification time, tmax = 0.03[sec].

Solution

End Solution

13.1.3 Direct Connection

In the above analysis is applicable to indirect connection. It should be noted that critical
area, Ac, is not function of the time. The direct connection posts more mathematical
difficulty because the critical area is not constant and time dependent.
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To continue

13.2 Non–Linear Functions Effects

In the above analysis a major assumption was dealing with the force or the function
dictating the piston position or movement. The linear function represents for some
manufacturing processes such as die casting. However, many other processes such
as combustion engine are better represented by a periodic operation close to the sine
function. The non-constant piston velocity leads to introduction of the energy transfer
from the piston the fluid. This transfer, from dimensional analysis point of view, occurs
at very low Mach number because the high speed of sound. Hence, at this range the
main mechanism is via viscosity and there is no shock wave generating significant heat
(transfer). When the piston is compressing gas, the speed of sound is significantly lower
and therefor the Mach numbers are larger. Hence, the main mechanism energy transfer
occur due to the shock dynamics.

Chapter 6 presents the reasons for shock when the piston velocity is larger than the
gas velocity. It has to be repeated and emphasize two situations that causes shocks in
the periodic cycle. The first one is the partially open value and second one is the partially
close value. Consider the first case, when the piston acceleration is positive and piston
is compressing the gas. That is, the piston velocity is larger than the displaced gas. In
that case, the piston creates a new shock shown in a moccasin color exhibits Figure
13.5. This shock is moving faster than the piston itself. Hence, a quasi state condition
is obtained for every state. The maximum amount of energy is limited by Bar–Meir’s
Maximum energy/temperature theory. The actual energy was suggested by Menikoff.
According to Menikoff, two shocks (outgoing shock with the first successive shock) are
sufficient to account for the actual energy transfer (see for detailed explanation in page
182). Hence, every element of the stage of the 1/4 of the cycle has to be accounted
for. There is not known analytical method in carry this integration. The investigation
carried at Potto Project shows that this effect increase the temperature significantly.

Very similar phenomenon can be observed on the other side of the cycle. Initially
when the piston is expanded the gas velocity is smaller than the piston velocity. Later
the gas expansion increases the gas velocity. At three quarters part of the cycle the
piston velocity becomes small than the gas velocity. Similar situation to the close valve
situation occurs. The piston produces shock at every element thereafter (till the end
of the cycle). Again the Menikoff’s suggestion to estimate can be applied for this
case as well. These two zones are the main mechanism for energy transfer to the gas.
The algorithm was build and test in Potto Project GDC and the publishing will appear
shortly.

13.3 Summary

The analysis indicates there is a critical vent area below which the ventilation is poor
and above which the resistance to air flow is minimal. This critical area depends on the
geometry and the filling time. The critical area also provides a mean to “combine” the
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actual vent area with the vent resistance for numerical simulations of the cavity filling,
taking into account the compressibility of the gas flow.
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Fig. -13.2. The pressure ratio as a function of the dimensionless time for chokeless condition.
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Fig. -13.4. The pressure ratio as a function of the dimensionless time.
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CHAPTER 14

Oblique Shock

14.1 Preface to Oblique Shock

θ

U1
U2

δ= 0

Fig. -14.1. A view of a straight normal shock
as a limited case for oblique shock.

In Chapter (6), a discussion on a nor-
mal shock was presented. A normal shock
is a special type of shock wave. The
other type of shock wave is the oblique
shock. In the literature oblique shock, nor-
mal shock, and Prandtl–Meyer function
are presented as three separate and dif-
ferent issues. However, one can view all
these cases as three different regions of a
flow over a plate with a deflection section.
Clearly, variation of the deflection angle from a zero (δ = 0) to a positive value results
in oblique shock. Further changing the deflection angle to a negative value results in
expansion waves. The common representation is done by ignoring the boundaries of
these models. However, this section attempts to show the boundaries and the limits or
connections of these models1.

1In this chapter, even the whole book, a very limited discussion about reflection shocks and collisions
of weak shock, Von Neumann paradox, triple shock intersection, etc are presented. The author believes
that these issues are not relevant to most engineering students and practices. Furthermore, these issues
should not be introduced in introductory textbook of compressible flow. Those who would like to obtain
more information, should refer to J.B. Keller, “Rays, waves and asymptotic,” Bull. Am. Math. Soc.
84, 727 (1978), and E.G. Tabak and R.R. Rosales, “Focusing of weak shock waves and the Von Neuman
paradox of oblique shock reflection,” Phys. Fluids 6, 1874 (1994).
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14.2 Introduction

14.2.1 Introduction to Oblique Shock

A normal shock occurs when there is a disturbance downstream which imposes a bound-
ary condition on the flow in which the fluid/gas can react only by a sharp change in the
flow direction. As it may be recalled, normal shock occurs when a wall is straight/flat
(δ = 0) as shown in Figure (14.1) which occurs when somewhere downstream a distur-
bance2 appears. When the deflection angle is increased, the gas flow must match the
boundary conditions. This matching can occur only when there is a discontinuity in the
flow field. Thus, the direction of the flow is changed by a shock wave with an angle
to the flow. This shock is commonly referred to as the oblique shock. Alternatively,
as discussed in Chapter 3 the flow behaves as it does in a hyperbolic field. In such a
case, the flow field is governed by a hyperbolic equation which deals with the case when
information (like boundary conditions) reaches from downstream only if they are within
the range of influence. For information such as the disturbance (boundary condition) to
reach deep into the flow from the side requires time. During this time, the flow moves
downstream and creates an angle.

14.2.2 Introduction to Prandtl–Meyer Function

No Shock
zone

Oblique
Shock

Prandtl
Meyer
Function

ν∞(k)
θmax(k)

Plane
Inclination

0
◦

︷ ︸︸ ︷︷ ︸︸ ︷

Fig. -14.2. The regions where oblique shock or
Prandtl–Meyer function exist. Notice that both
have a maximum point and a “no solution” zone,
which is around zero. However, Prandtl-Meyer func-
tion approaches closer to a zero deflection angle.

Decreasing the deflection angle results
in the same effects as before. The
boundary conditions must match the
geometry. Yet, for a negative deflec-
tion angle (in this section’s notation),
the flow must be continuous. The
analysis shows that the flow velocity
must increase to achieve this require-
ment. This velocity increase is referred
to as the expansion wave. As it will be
shown in the next chapter, as opposed
to oblique shock analysis, the increase
in the upstream Mach number determines the downstream Mach number and the “neg-
ative” deflection angle.

It has to be pointed out that both the oblique shock and the Prandtl–Meyer
function have a maximum point for M1 → ∞. However, the maximum point for the
Prandtl–Meyer function is much larger than the oblique shock by a factor of more than
2. What accounts for the larger maximum point is the effective turning (less entropy
production) which will be explained in the next chapter (see Figure (14.2)).

2Zero velocity, pressure boundary conditions, and different inclination angle, are examples of forces
that create shock. The zero velocity can be found in a jet flowing into a still medium of gas.
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14.2.3 Introduction to Zero Inclination

What happens when the inclination angle is zero? Which model is correct to use? Can
these two conflicting models, the oblique shock and the Prandtl–Meyer function, co-
exist? Or perhaps a different model better describes the physics. In some books and
in the famous NACA report 1135 it was assumed that Mach wave and oblique shock
co–occur in the same zone. Previously (see Chapter 6), it was assumed that normal
shock occurs at the same time. In this chapter, the stability issue will be examined in
greater detail.

14.3 Oblique Shock
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U1n θ − δ

δ

θ

π/2− θ

π

U1t

U1
U2t

U2

U2n

Fig. -14.3. A typical oblique shock schematic.

The shock occurs in reality in sit-
uations where the shock has three–
dimensional effects. The three–
dimensional effects of the shock make
it appear as a curved plane. However,
one–dimensional shock can be consid-
ered a representation for a chosen ar-
bitrary accuracy with a specific small
area. In such a case, the change of the
orientation makes the shock consider-
ations two–dimensional. Alternately,
using an infinite (or a two–dimensional) object produces a two–dimensional shock. The
two–dimensional effects occur when the flow is affected from the “side,” i.e., a change
in the flow direction3. An example of such case is creation of shock from the side.

To match the boundary conditions, the flow turns after the shock to be parallel
to the inclination angle. Figure (14.3) exhibits the schematic of the oblique shock. The
deflection angle, δ, is the direction of the flow after the shock (parallel to the wall).
The normal shock analysis dictates that after the shock, the flow is always subsonic.
The total flow after the oblique shock can also be supersonic, which depends on the
boundary layer and deflection angle.

The velocity has two components (with respect to the shock plane/surface). Only
the oblique shock’s normal component undergoes the “shock.” The tangent component
does not change because it does not “move” across the shock line. Hence, the mass
balance reads

ρ1 U1n = ρ2 U2n (14.1)

The momentum equation reads

P1 + ρ1 U1n
2 = P2 + ρ2 U2n

2 (14.2)

3The author begs for forgiveness from those who view this description as offensive (There was an
unpleasant email to the author accusing him of revolt against the holy of the holies.). If you do not
like this description, please just ignore it. You can use the traditional explanation, you do not need the
author’s permission.
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The momentum equation in the tangential direction is reduced to

U1t = U2t (14.3)

The energy balance in coordinates moving with shock reads

CpT1 +
U1n

2

2
= CpT2 +

U2n
2

2
(14.4)

Equations (14.1), (14.2), and (14.4) are the same as the equations for normal shock
with the exception that the total velocity is replaced by the perpendicular components.
Yet, the new relationship between the upstream Mach number, the deflection angle, δ,
and the Mach angle, θ has to be solved. From the geometry it can be observed that

tan θ =
U1n

U1t

(14.5)

and

tan(θ − δ) =
U2n

U2t

(14.6)

Unlike in the normal shock, here there are three possible pairs4 of solutions to
these equations. The first is referred to as the weak shock; the second is the strong
shock; and the third is an impossible solution (thermodynamically)5. Experiments and
experience have shown that the common solution is the weak shock, in which the shock
turns to a lesser extent6.

tan θ

tan(θ − δ)
=

U1n

U2n

(14.7)

The above velocity–geometry equations can also be expressed in term of Mach number,
as

sin θ =
M1n

M1
(14.8)

and in the downstream side reads

sin(θ − δ) =
M2n

M2
(14.9)

Equation (14.8) alternatively also can be expressed as

cos θ =
M1t

M1
(14.10)

4This issue is due to R. Menikoff, who raised the solution completeness issue.
5The solution requires solving the entropy conservation equation. The author is not aware of

“simple” proof and a call to find a simple proof is needed.
6Actually this term is used from historical reasons. The lesser extent angle is the unstable angle

and the weak angle is the middle solution. But because the literature referred to only two roots, the
term lesser extent is used.
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And equation (14.9) alternatively also can be expressed as

cos (θ − δ) =
M2t

M2
(14.11)

The total energy across a stationary oblique shock wave is constant, and it follows
that the total speed of sound is constant across the (oblique) shock. It should be noted
that although, U1t = U2t the Mach number is M1t 6= M2t because the temperatures
on both sides of the shock are different, T1 6= T2.

As opposed to the normal shock, here angles (the second dimension) have to
be determined. The solution from this set of four equations, (14.8) through (14.11),
is a function of four unknowns of M1, M2, θ, and δ. Rearranging this set utilizing
geometrical identities such as sin α = 2 sin α cos α results in

tan δ = 2 cot θ

[
M1

2 sin2 θ − 1
M1

2 (k + cos 2θ) + 2

]Angle Relationship

(14.12)

The relationship between the properties can be determined by substituting M1 sin θ
for of M1 into the normal shock relationship, which results in

P2

P1
=

2 k M1
2 sin2 θ − (k − 1)

k + 1

Pressure Ratio

(14.13)

The density and normal velocity ratio can be determined by the following equation

ρ2

ρ1
=

U1n

U2n

=
(k + 1)M1

2 sin2 θ

(k − 1)M1
2 sin2 θ + 2

Density Ratio

(14.14)

The temperature ratio is expressed as

T2

T1
=

2 k M1
2 sin2 θ − (k − 1)

[
(k − 1)M1

2 + 2
]

(k + 1)2 M1

Temperature Ratio

(14.15)

Prandtl’s relation for oblique shock is

Un1Un2 = c2 − k − 1
k + 1

Ut
2 (14.16)

The Rankine–Hugoniot relations are the same as the relationship for the normal shock

P2 − P1

ρ2 − ρ1
= k

P2 − P1

ρ2 − ρ1
(14.17)
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14.4 Solution of Mach Angle

Oblique shock, if orientated to a coordinate perpendicular and parallel shock plane is
like a normal shock. Thus, the relationship between the properties can be determined by
using the normal components or by utilizing the normal shock table developed earlier.
One has to be careful to use the normal components of the Mach numbers. The
stagnation temperature contains the total velocity.

Again, the normal shock is a one–dimensional problem, thus, only one parameter
is required (to solve the problem). Oblique shock is a two–dimensional problem and
two properties must be provided so a solution can be found. Probably, the most useful
properties are upstream Mach number, M1 and the deflection angle, which create a
somewhat complicated mathematical procedure, and this will be discussed later. Other
combinations of properties provide a relatively simple mathematical treatment, and the
solutions of selected pairs and selected relationships will be presented.

14.4.1 Upstream Mach Number, M1, and Deflection Angle, δ

Again, this set of parameters is, perhaps, the most common and natural to examine.
Thompson (1950) has shown that the relationship of the shock angle is obtained from
the following cubic equation:

x3 + a1x
2 + a2x + a3 = 0

Governing Angle Equation

(14.18)

where

x = sin2 θ (14.19)

and

a1 = −M1
2 + 2

M1
2 − k sin2 δ (14.20)

a2 = −2M1
2 + 1

M1
4 +

[
(k + 1)2

4
+

k − 1
M1

2

]
sin2 δ (14.21)

a3 = −cos2 δ

M1
4 (14.22)

Equation (14.18) requires that x has to be a real and positive number to obtain
a real deflection angle7. Clearly, sin θ must be positive, and the negative sign refers to
the mirror image of the solution. Thus, the negative root of sin θ must be disregarded

7 This point was pointed out by R. Menikoff. He also suggested that θ is bounded by sin−1 1/M1

and 1.
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The solution of a cubic equation such as (14.18) provides three roots8. These
roots can be expressed as

x1 = −1
3
a1 + (S + T )

First Root

(14.23)

x2 = −1
3
a1 − 1

2
(S + T ) +

1
2
i
√

3(S − T )

Second Root

(14.24)

and

x3 = −1
3
a1 − 1

2
(S + T )− 1

2
i
√

3(S − T )

Third Root

(14.25)

Where

S =
3
√

R +
√

D, (14.26)

T =
3
√

R−
√

D (14.27)

and where the definition of the D is

D = Q3 + R2 (14.28)

and where the definitions of Q and R are

Q =
3a2 − a1

2

9
(14.29)

and

R =
9a1a2 − 27a3 − 2a1

3

54
(14.30)

Only three roots can exist for the Mach angle, θ. From a mathematical point of view,
if D > 0, one root is real and two roots are complex. For the case D = 0, all the roots
are real and at least two are identical. In the last case where D < 0, all the roots are
real and unequal.

The physical meaning of the above analysis demonstrates that in the range where
D > 0 no solution can exist because no imaginary solution can exist9. D > 0 occurs

8The highest power of the equation (only with integer numbers) is the number of the roots. For
example, in a quadratic equation there are two roots.

9A call for suggestions, to explain about complex numbers and imaginary numbers should be in-
cluded. Maybe insert an example where imaginary solution results in no physical solution.
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when no shock angle can be found, so that the shock normal component is reduced to
subsonic and yet parallel to the inclination angle.

Furthermore, only in some cases when D = 0 does the solution have a physical
meaning. Hence, the solution in the case of D = 0 has to be examined in the light of
other issues to determine the validity of the solution.

When D < 0, the three unique roots are reduced to two roots at least for the
steady state because thermodynamics dictates10 that. Physically, it can be shown that
the first solution(14.23), referred sometimes as a thermodynamically unstable root,
which is also related to a decrease in entropy, is “unrealistic.” Therefore, the first
solution does not occur in reality, at least, in steady–state situations. This root has
only a mathematical meaning for steady–state analysis11.

Normal
Shock

Fig. -14.4. Flow around spherically blunted 30◦ cone-
cylinder with Mach number 2.0. It can be noticed that
the normal shock, the strong shock, and the weak shock
coexist.

These two roots represent
two different situations. First,
for the second root, the shock
wave keeps the flow almost all the
time as a supersonic flow and it
is referred to as the weak solu-
tion (there is a small section that
the flow is subsonic). Second, the
third root always turns the flow
into subsonic and it is referred to
as the strong solution. It should
be noted that this case is where
entropy increases in the largest
amount.

In summary, if an imaginary
hand moves the shock angle start-
ing from the deflection angle and
reaching the first angle that satisfies the boundary condition, this situation is unstable
and the shock angle will jump to the second angle (root). If an additional “push” is
given, for example, by additional boundary conditions, the shock angle will jump to
the third root12. These two angles of the strong and weak shock are stable for a two–
dimensional wedge (see the appendix of this chapter for a limited discussion on the

10This situation is somewhat similar to a cubical body rotation. The cubical body has three sym-
metrical axes which the body can rotate around. However, the body will freely rotate only around two
axes with small and large moments of inertia. The body rotation is unstable around the middle axes.
The reader can simply try it.

11There is no experimental or analytical evidence, that the author has found, showing that it is
totally impossible. The “unstable” terms can be thermodynamically stable in unsteady case. Though,
those who are dealing with rapid transient situations should be aware that this angle of oblique shock
can exist. There is no theoretical evidence that showing that in strong unsteady state this angle is
unstable. The shock will initially for a very brief time transient in it and will jump from this angle to
the thermodynamically stable angles.

12See the discussion on the stability. There are those who view this question not as a stability
equation but rather as under what conditions a strong or a weak shock will prevail.
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stability13).

14.4.2 When No Oblique Shock Exist or the case of D > 0

Large deflection angle for given, M1

The first range is when the deflection angle reaches above the maximum point. For a
given upstream Mach number, M1, a change in the inclination angle requires a larger
energy to change the flow direction. Once, the inclination angle reaches the “maximum
potential energy,” a change in the flow direction is no longer possible. As the alternative
view, the fluid “sees” the disturbance (in this case, the wedge) in front of it and hence
the normal shock occurs. Only when the fluid is away from the object (smaller angle)
liquid “sees” the object in a different inclination angle. This different inclination angle
is sometimes referred to as an imaginary angle.

The Simple Calculation Procedure

For example, in Figure (14.4) and (14.5), the imaginary angle is shown. The flow
is far away from the object and does not “see’ the object. For example, for, M1 −→∞
the maximum deflection angle is calculated when D = Q3 + R2 = 0. This can be done
by evaluating the terms a1, a2, and a3 for M1 = ∞.

a1 = −1− k sin2 δ

a2 =
(k + 1)2 sin2 δ

4
a3 = 0

With these values the coefficients R and Q are

R =

−9(1 + k sin2 δ)

(
(k + 1)2 sin2 δ

4

)
− (2)(−)(1 + k sin2 δ)2

54
and

Q =
(1 + k sin2 δ)2

9

Solving equation (14.28) after substituting these values of Q and R provides series
of roots from which only one root is possible. This root, in the case k = 1.4, is just
above δmax ∼ π

4 (note that the maximum is also a function of the heat ratio, k).
While the above procedure provides the general solution for the three roots, there

is simplified transformation that provides solution for the strong and and weak solu-
tion. It must be noted that in doing this transformation, the first solution is “lost”
supposedly because it is “negative.” In reality the first solution is not negative but
rather some value between zero and the weak angle. Several researchers14 suggested

13This material is extra and not recommended for standard undergraduate students.
14A whole discussion on the history of this can be found in “Open content approach to academic

writing” on http://www.potto.org/obliqueArticle.phpattheendofthebook.
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Fig. -14.5. The view of a large inclination angle from different points in the fluid field.

that instead Thompson’s equation should be expressed by equation (14.18) by tan θ
and is transformed into

(
1 +

k − 1
2

M1
2

)
tan δ tan3 θ − (

M1
2 − 1

)
tan2 θ +

(
1 +

k + 1
2

)
tan δ tan θ + 1 = 0

(14.31)

The solution to this equation (14.31) for the weak angle is

θweak = tan−1




M1
2 − 1 + 2 f1(M1, δ) cos

(
4 π + cos−1(f2(M1, δ))

3

)

3
(

1 +
k − 1

2
M1

2

)
tan δ




Weak Angle Solution

(14.32)
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θstrong = tan−1

M1
2 − 1 + 2f1(M1, δ) cos

(
cos−1(f2(M1, δ))

3

)

3
(

1 +
k − 1

2
M1

2

)
tan δ

Strong Angle Solution

(14.33)

where these additional functions are

f1(M1, δ) =

√
(
M1

2 − 1
)2 − 3

(
1 +

k − 1
2

M1
2

)(
1 +

k + 1
2

M1
2

)
tan2 δ (14.34)

and

f2(M1, δ) =

(
M1

2 − 1
)3 − 9

(
1 + k−1

2 M1
2
) (

1 + k−1
2 M1

2 + k+1
4 M1

4
)
tan2 δ

f1(M1, δ)3
(14.35)

Figure (14.6) exhibits typical results for oblique shock for two deflection angle of
5 and 25 degree. Generally, the strong shock is reduced as the increase of the Mach
number while the weak shock is increase. The impossible shock for unsteady state is
almost linear function of the upstream Mach number and almost not affected by the
deflection angle.
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Fig. -14.6. The three different Mach numbers after the oblique shock for two deflection angles
of 5◦ and 25◦.
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The Procedure for Calculating The Maximum Deflection Point

The maximum angle is obtained when D = 0. When the right terms defined in
(14.20)-(14.21), (14.29), and (14.30) are substituted into this equation and utilizing the
trigonometrical identity sin2 δ + cos2 δ = 1 and other trigonometrical identities results
in Maximum Deflection Mach Number’s equation in which is

M1
2 (k + 1) (M1n

2 + 1) = 2(kM1n
4 + 2M1n

2 − 1) (14.36)

This equation and its twin equation can be obtained by an alternative procedure pro-
posed by someone15 who suggested another way to approach this issue. It can be
noticed that in equation (14.12), the deflection angle is a function of the Mach an-
gle and the upstream Mach number, M1. Thus, one can conclude that the maximum
Mach angle is only a function of the upstream Much number, M1. This can be shown
mathematically by the argument that differentiating equation (14.12) and equating the
results to zero creates relationship between the Mach number, M1 and the maximum
Mach angle, θ. Since in that equation there appears only the heat ratio k, and Mach
number, M1, θmax is a function of only these parameters. The differentiation of the
equation (14.12) yields

d tan δ

dθ
=

kM1
4 sin4 θ +

(
2− (k+1)

2 M1
2
)

M1
2 sin2 θ −

(
1 + (k+1)

2 M1
2
)

kM1
4 sin4 θ −

[
(k − 1) + (k+1)2M1

2

4

]
M1

2 sin2 θ − 1
(14.37)

Because tan is a monotonous function, the maximum appears when θ has its maximum.
The numerator of equation (14.37) is zero at different values of the denominator. Thus,
it is sufficient to equate the numerator to zero to obtain the maximum. The nominator
produces a quadratic equation for sin2 θ and only the positive value for sin2 θ is applied
here. Thus, the sin2 θ is

sin2 θmax =
−1 + k+1

4 M1
2 +

√
(k + 1)

[
1 + k−1

2 M1
2 +

(
k+1
2 M1

)4
]

kM1
2 (14.38)

Equation (14.38) should be referred to as the maximum’s equation. It should be noted
that both the Maximum Mach Deflection equation and the maximum’s equation lead
to the same conclusion that the maximum M1n is only a function of upstream the
Mach number and the heat ratio k. It can be noticed that the Maximum Deflection
Mach Number’s equation is also a quadratic equation for M1n

2. Once M1n is found,
then the Mach angle can be easily calculated by equation (14.8). To compare these
two equations the simple case of Maximum for an infinite Mach number is examined.
It must be pointed out that similar procedures can also be proposed (even though it

15At first, it was seen as C. J.Chapman, English mathematician to be the creator but later an earlier
version by several months was proposed by Bernard Grossman. At this stage, it is not clear who was
the first to propose it.
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does not appear in the literature). Instead, taking the derivative with respect to θ, a
derivative can be taken with respect to M1. Thus,

d tan δ

dM1
= 0 (14.39)

and then solving equation (14.39) provides a solution for Mmax.

A simplified case of the Maximum Deflection Mach Number’s equation for large
Mach number becomes

M1n =

√
k + 1
2k

M1 for M1 >> 1 (14.40)

Hence, for large Mach numbers, the Mach angle is sin θ =
√

k+1
2k (for k=1.4), which

makes θ = 1.18 or θ = 67.79◦.

With the value of θ utilizing equation (14.12), the maximum deflection angle can
be computed. Note that this procedure does not require an approximation of M1n to
be made. The general solution of equation (14.36) is

M1n =

√√
(k + 1)2 M1

4 + 8 (k2 − 1) M1
2 + 16 (k + 1) + (k + 1) M1

2 − 4

2
√

k

Normal Shock Minikoff Solution

(14.41)

Note that Maximum Deflection Mach Number’s equation can be extended to deal with
more complicated equations of state (aside from the perfect gas model).

This typical example is for those who like mathematics.

Example 14.1:
Derive the perturbation of Maximum Deflection Mach Number’s equation for the case
of a very small upstream Mach number number of the form M1 = 1 + ε. Hint, Start
with equation (14.36) and neglect all the terms that are relatively small.

Solution

The solution can be done by substituting (M1 = 1 + ε) into equation (14.36) and it
results in

M1n =

√√
ε(k) + ε2 + 2 ε− 3 + kε2 + 2 kε + k

4k

Normal Shock Small Values

(14.42)
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where the epsilon function is

ε(k) =(k2 + 2k + 1) ε4 + (4 k2 + 8 k + 4) ε3+

(14 k2 + 12 k − 2) ε2 + (20 k2 + 8 k − 12) ε + 9 (k + 1)2 (14.43)

Now neglecting all the terms with ε results for the epsilon function in

ε(k) ∼ 9 (k + 1)2 (14.44)

And the total operation results in

M1n =

√
3 (k + 1)− 3 + k

4k
= 1 (14.45)

Interesting to point out that as a consequence of this assumption the maximum shock
angle, θ is a normal shock. However, taking the second term results in different value.
Taking the second term in the explanation results in

M1n =

√√√√
√

9 (k + 1)2 + (20 k2 + 8 k − 12) ε− 3 + k + 2 (1 + k)ε

4k
(14.46)

Note this equation (14.46) produce an un realistic value and additional terms are re-
quired to obtained to produce a realistic value.

End Solution

The case of D ≥ 0 or 0 ≥ δ

The second range in which D > 0 is when δ < 0. Thus, first the transition line in
which D = 0 has to be determined. This can be achieved by the standard mathematical
procedure of equating D = 0. The analysis shows regardless of the value of the upstream
Mach number D = 0 when δ = 0. This can be partially demonstrated by evaluating
the terms a1, a2, and a3 for the specific value of M1 as following

a1 =
M1

2 + 2
M1

2

a2 = −2M1
2 + 1

M1
4

a3 = − 1
M1

4 (14.47)

With values presented in equations (14.47) for R and Q becoming

R =
9

(
M1

2 + 2
M1

2

)(
2M1

2 + 1
M1

4

)
+ 27

(
1

M1
4

)
− 2

(
M1

2 + 2
M1

2

)2

54

=
9

(
M1

2 + 2
) (

2M1
2 + 1

)
+ 27M1

2 − 2 M1
2
(
M1

2 + 2
)2

54 M1
6 (14.48)
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and

Q =
3

(
2M1

2+1
M1

4

)
−

(
M1

2+2
M1

2

)3

9
(14.49)

Substituting the values of Q and R equations (14.48) (14.49) into equation (14.28)
provides the equation to be solved for δ.




3
(

2M1
2+1

M1
4

)
−

(
M1

2+2
M1

2

)3

9




3

+

[
9

(
M1

2 + 2
) (

2M1
2 + 1

)
+ 27M1

2 − 2M1
2
(
M1

2 + 2
)2

54M1
6

]2

= 0 (14.50)

The author is not aware of any analytical demonstration in the literature which shows
that the solution is identical to zero for δ = 016. Nevertheless, this identity can be
demonstrated by checking several points for example, M1 = 1., 2.0,∞. Table (14.7)
is provided for the following demonstration. Substitution of all the above values into
(14.28) results in D = 0.

Utilizing the symmetry and antisymmetry of the qualities of the cos and sin for
δ < 0 demonstrates that D > 0 regardless of Mach number. Hence, the physical
interpretation of this fact is that either no shock exists and the flow is without any
discontinuity or that a normal shock exists17. Note that, in the previous case, with a
positive large deflection angle, there was a transition from one kind of discontinuity to
another.

XXXXXXXXXXM1

coefficients
a1 a2 a3

1.0 -3 -1 - 3
2

2.0 3 0 9
16

∞ -1 0 - 1
16

Fig. -14.7. The various coefficients of three different
Mach numbers to demonstrate that D is zero

In the range where δ ≤ 0, the
question is whether it is possi-
ble for an oblique shock to ex-
ist? The answer according to this
analysis and stability analysis is
no. And according to this anal-
ysis, no Mach wave can be gener-
ated from the wall with zero de-
flection. In other words, the wall
does not emit any signal to the
flow (assuming zero viscosity),
which contradicts the common
approach. Nevertheless, in the lit-
erature, there are several papers

16A mathematical challenge for those who like to work it out.
17There are several papers that attempt to prove this point in the past. Once this analytical solution

was published, this proof became trivial. But for non ideal gas (real gas) this solution is only an
indication.
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suggesting zero strength Mach wave; others suggest a singular point18. The question
of singular point or zero Mach wave strength are only of mathematical interest.

µ1 µ2 µ3 µ∞

Fig. -14.8. The Mach waves that are supposed to
be generated at zero inclination.

Suppose that there is a Mach
wave at the wall at zero inclination
(see Figure (14.8)). Obviously, an-
other Mach wave occurs after a small
distance. But because the velocity
after a Mach wave (even for an ex-
tremely weak shock wave) is reduced,
thus, the Mach angle will be larger
(µ2 > µ1). If the situation keeps on
occurring over a finite distance, there
will be a point where the Mach num-
ber will be 1 and a normal shock will
occur, according the common expla-
nation. However, the reality is that no continuous Mach wave can occur because of the
viscosity (boundary layer).

In reality, there are imperfections in the wall and in the flow and there is the
question of boundary layer. It is well known, in the engineering world, that there is
no such thing as a perfect wall. The imperfections of the wall can be, for simplicity’s
sake, assumed to be as a sinusoidal shape. For such a wall the zero inclination changes
from small positive value to a negative value. If the Mach number is large enough and
the wall is rough enough, there will be points where a weak19 weak will be created.
On the other hand, the boundary layer covers or smooths out the bumps. With these
conflicting mechanisms, both will not allow a situation of zero inclination with emission
of Mach wave. At the very extreme case, only in several points (depending on the
bumps) at the leading edge can a very weak shock occur. Therefore, for the purpose
of an introductory class, no Mach wave at zero inclination should be assumed.

Furthermore, if it was assumed that no boundary layer exists and the wall is
perfect, any deviations from the zero inclination angle creates a jump from a positive
angle (Mach wave) to a negative angle (expansion wave). This theoretical jump occurs
because in a Mach wave the velocity decreases while in the expansion wave the velocity
increases. Furthermore, the increase and the decrease depend on the upstream Mach
number but in different directions. This jump has to be in reality either smoothed out
or has a physical meaning of jump (for example, detach normal shock). The analysis
started by looking at a normal shock which occurs when there is a zero inclination.
After analysis of the oblique shock, the same conclusion must be reached, i.e. that the
normal shock can occur at zero inclination. The analysis of the oblique shock suggests
that the inclination angle is not the source (boundary condition) that creates the shock.
There must be another boundary condition(s) that causes the normal shock. In the light

18See for example, paper by Rosles, Tabak, “Caustics of weak shock waves,” 206 Phys. Fluids 10
(1) , January 1998.

19It is not a mistake, there are two “weaks.” These words mean two different things. The first
“weak” means more of compression “line” while the other means the weak shock.
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of this discussion, at least for a simple engineering analysis, the zone in the proximity
of zero inclination (small positive and negative inclination angle) should be viewed as a
zone without any change unless the boundary conditions cause a normal shock.

Nevertheless, emission of Mach wave can occur in other situations. The approxi-
mation of weak weak wave with nonzero strength has engineering applicability in a very
limited cases, especially in acoustic engineering, but for most cases it should be ignored.
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Fig. -14.9. The D, shock angle, and My for M1 = 3.

14.4.3 Upstream Mach Number, M1, and Shock Angle, θ

The solution for upstream Mach number, M1, and shock angle, θ, are far much simpler
and a unique solution exists. The deflection angle can be expressed as a function of
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these variables as

cot δ = tan (θ)
[

(k + 1) M1
2

2 (M1
2 sin2 θ − 1)

− 1
]

δ For θ and M1

(14.51)

or

tan δ =
2 cot θ(M1

2 sin2 θ − 1)
2 + M1

2(k + 1− 2 sin2 θ)
(14.52)

The pressure ratio can be expressed as

P2

P1
=

2 k M1
2 sin2 θ − (k − 1)

k + 1

Pressure Ratio

(14.53)

The density ratio can be expressed as

ρ2

ρ1
=

U1n

U2n

=
(k + 1) M1

2 sin2 θ

(k − 1)M1
2 sin2 θ + 2

Density Ratio

(14.54)

The temperature ratio expressed as

T2

T1
=

c2
2

c1
2

=

(
2 k M1

2 sin2 θ − (k − 1)
) (

(k − 1)M1
2 sin2 θ + 2

)

(k + 1) M1
2 sin2 θ

Temperature Ratio

(14.55)

The Mach number after the shock is

M2
2 sin(θ − δ) =

(k − 1)M1
2 sin2 θ + 2

2 k M1
2 sin2 θ − (k − 1)

Exit Mach Number

(14.56)

or explicitly

M2
2 =

(k + 1)2M1
4 sin2 θ − 4 (M1

2 sin2 θ − 1)(kM1
2 sin2 θ + 1)(

2 k M1
2 sin2 θ − (k − 1)

) (
(k − 1) M1

2 sin2 θ + 2
) (14.57)

The ratio of the total pressure can be expressed as

P02

P01

=
[

(k + 1)M1
2 sin2 θ

(k − 1)M1
2 sin2 θ + 2

] k
k−1

[
k + 1

2kM1
2 sin2 θ − (k − 1)

] 1
k−1

Stagnation Pressure Ratio

(14.58)
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Even though the solution for these variables, M1 and θ, is unique, the possible range
deflection angle, δ, is limited. Examining equation (14.51) shows that the shock angle,
θ , has to be in the range of sin−1(1/M1) ≥ θ ≥ (π/2) (see Figure 14.10). The range

of given θ, upstream Mach number M1, is limited between ∞ and
√

1/ sin2 θ.
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Fig. -14.10. The possible range of solutions for different parameters for given upstream Mach
numbers.

14.4.4 Given Two Angles, δ and θ

It is sometimes useful to obtain a relationship where the two angles are known. The
first upstream Mach number, M1 is

M1
2 =

2 (cot θ + tan δ)
sin 2θ − (tan δ) (k + cos 2θ)

Mach Number Angles Relationship

(14.59)

The reduced pressure difference is

2(P2 − P1)
ρU2

=
2 sin θ sin δ

cos(θ − δ)
(14.60)

The reduced density is

ρ2 − ρ1

ρ2
=

sin δ

sin θ cos(θ − δ)
(14.61)
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For a large upstream Mach number M1 and a small shock angle (yet not ap-
proaching zero), θ, the deflection angle, δ must also be small as well. Equation (14.51)
can be simplified into

θ ∼= k + 1
2

δ (14.62)

The results are consistent with the initial assumption which shows that it was an ap-
propriate assumption.

Fig. -14.11. Color-schlieren image of a two dimensional flow over a wedge. The total deflection
angel (two sides) is 20◦ and upper and lower Mach angel are ∼ 28◦ and ∼ 30◦, respectively.
The image show the end–effects as it has thick (not sharp transition) compare to shock over
a cone. The image was taken by Dr. Gary Settles at Gas Dynamics laboratory, Penn State
University.

14.4.5 Flow in a Semi–2D Shape

Example 14.2:
In Figure 14.11 exhibits wedge in a supersonic flow with unknown Mach number. Exam-
ination of the Figure reveals that it is in angle of attack. 1) Calculate the Mach number
assuming that the lower and the upper Mach angles are identical and equal to ∼ 30◦

each (no angle of attack). 2) Calculate the Mach number and angle of attack assuming
that the pressure after the shock for the two oblique shocks is equal. 3) What kind are
the shocks exhibits in the image? (strong, weak, unsteady) 4) (Open question) Is there
possibility to estimate the air stagnation temperature from the information provided in
the image. You can assume that specific heats, k is a monotonic increasing function of
the temperature.
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Solution

Part (1)

The Mach angle and deflection angle can be obtained from the Figure 14.11. With this

data and either using equation (14.59) or potto-GDC results in

M1 Mx Mys Myw θs θw δ
P0y

P0x

2.6810 2.3218 0 2.24 0 30 10 0.97172

The actual Mach number after the shock is then

M2 =
M2n

sin (θ − δ)
=

0.76617
sin(30− 10)

= 0.839

The flow after the shock is subsonic flow.

Part (2)

For the lower part shock angle of ∼ 28◦ the results are

M1 Mx Mys Myw θs θw δ
P0y

P0x

2.9168 2.5754 0 2.437 0 28 10 0.96549

From the last table, it is clear that Mach number is between the two values of 2.9168
and 2.6810 and the pressure ratio is between 0.96549 and 0.97172. One of procedure to
calculate the attack angle is such that pressure has to match by “guessing” the Mach
number between the extreme values.

Part (3)

The shock must be weak shock because the shock angle is less than 60◦.
End Solution

14.4.6 Flow in a Semi-2D Shape

The discussion so far was about the straight infinite long wedge20 which is a “pure”
2–D configuration. Clearly, for any finite length of the wedge, the analysis needs to
account for edge effects. The end of the wedge must have a different configuration
(see Figure 14.12). Yet, the analysis for the middle section produces a close result
to reality (because of symmetry). The section where the current analysis is close to
reality can be estimated from a dimensional analysis for the required accuracy or by a
numerical method. The dimensional analysis shows that only the doted area to be area

20Even finite wedge with limiting wall can be considered as an example for this discussion if the B.L.
is neglected.
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where current solution can be assumed as correct21. In spite of the small area were the
current solution can be assumed, this solution is also act as a “reality check” to any
numerical analysis. The analysis also provides additional value of the expected range.
In Figure 14.11 shows that “shock angle” is not sharp. The thickness (into page) of
the wedge is only one half times the the wedge itself22. Even for this small ratio two
dimensional it provide very good results.

2-D oblique shock
on both sides. Notice the
the purpule area is the 
range where this occur

normal analysis

range

intermidiate analysis

range

edge analysis
range

no shock

no shock

flow direction

︷ ︸︸
︷ ︷ ︸︸

︷
︷ ︸︸

︷
︷ ︸︸

︷
︷ ︸︸

︷

Fig. -14.12. Schematic of finite wedge with zero
angle of attack. Notice that the purple area is
only range where standard oblique shock anal-
ysis is applied.

Another geometry that can be con-
sidered as two–dimensional is the cone
(some referred to it as Taylor–Maccoll
flow). Even though, the cone is a three–
dimensional problem, the symmetrical na-
ture of the cone creates a semi–2D prob-
lem. In this case there are no edge effects
and the geometry dictates slightly different
results. The mathematics is much more
complicated but there are three solutions.
As before, the first solution is thermody-
namical unstable. Experimental and ana-
lytical work shows that the weak solution
is the stable solution and a discussion is
provided in the appendix of this chapter.
As opposed to the weak shock, the strong shock is unstable, at least, for steady state
and no known experiments showing that it exist can be found in the literature. All the
literature, known to the author, reports that only a weak shock is possible.

14.4.7 Small δ “Weak Oblique shock”

This interest in this topic is mostly from an academic point of view. It is recommended
that this issue be skipped and the time be devoted to other issues. The author is not
aware of any single case in which this topic is used in real–world calculations. In fact,
after the explicit analytical solution has been provided, studying this topic seems to
come at the expense of other more important topics. However, the author admits that
as long as there are instructors who examine their students on this issue, it should be
covered in this book.

For small deflection angles, δ, and small normal upstream Mach numbers, M1 ∼
1 + ε,

tan θ =
1√

M1
2 − 1

(14.63)

21At this stage, dimensional analysis is not completed. The author is not aware of any such analysis
in literature. The common approach is to carry out numerical analysis. In spite of recent trends, for
most engineering applications, a simple tool is sufficient for limit accuracy. Additionally, the numerical
works require many times a “reality check.”

22This information is according to Gary Settles which he provided the estimate only.
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· · · under construction.

14.4.8 Close and Far Views of the Oblique Shock

δ

θ

Fig. -14.13. A local and a far view of the
oblique shock.

In many cases, the close proximity view pro-
vides a continuous turning of the deflection
angle, δ. Yet, the far view shows a sharp tran-
sition. The traditional approach to reconcile
these two views is by suggesting that the far
view shock is a collection of many small weak
shocks (see Figure 14.13). At the local view
close to the wall, the oblique shock is a weak
“weak oblique” shock. From the far view,
the oblique shock is an accumulation of many
small (or again weak) “weak shocks.” How-
ever, these small “shocks” are built or accu-
mulate into a large and abrupt change (shock). In this theory, the boundary layer
(B.L.) does not enter into the calculation. In reality, the boundary layer increases the
zone where a continuous flow exists. The boundary layer reduces the upstream flow
velocity and therefore the shock does not exist at close proximity to the wall. In larger
distance from the wall, the shock becomes possible.

14.4.9 Maximum Value of Oblique shock

The maximum values are summarized in the following Table .

Table -14.1. Table of maximum values of the oblique Shock k=1.4

Mx My δmax θmax

1.1000 0.97131 1.5152 76.2762

1.2000 0.95049 3.9442 71.9555

1.3000 0.93629 6.6621 69.3645

1.4000 0.92683 9.4272 67.7023

1.5000 0.92165 12.1127 66.5676

1.6000 0.91941 14.6515 65.7972

1.7000 0.91871 17.0119 65.3066

1.8000 0.91997 19.1833 64.9668

1.9000 0.92224 21.1675 64.7532
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Table -14.1. Maximum values of oblique shock (continue) k=1.4

Mx My δmax θmax

2.0000 0.92478 22.9735 64.6465

2.2000 0.93083 26.1028 64.6074

2.4000 0.93747 28.6814 64.6934

2.6000 0.94387 30.8137 64.8443

2.8000 0.94925 32.5875 65.0399

3.0000 0.95435 34.0734 65.2309

3.2000 0.95897 35.3275 65.4144

3.4000 0.96335 36.3934 65.5787

3.6000 0.96630 37.3059 65.7593

3.8000 0.96942 38.0922 65.9087

4.0000 0.97214 38.7739 66.0464

5.0000 0.98183 41.1177 66.5671

6.0000 0.98714 42.4398 66.9020

7.0000 0.99047 43.2546 67.1196

8.0000 0.99337 43.7908 67.2503

9.0000 0.99440 44.1619 67.3673

10.0000 0.99559 44.4290 67.4419

It must be noted that the calculations are for the perfect gas model. In some cases,
this assumption might not be sufficient and different analysis is needed. Henderson
and Menikoff23 suggested a procedure to calculate the maximum deflection angle for
arbitrary equation of state24.

14.5 Detached Shock
When the mathematical quantity D becomes positive, for large deflection angle, there
isn’t a physical solution to an oblique shock. Since the flow “sees” the obstacle, the

23Henderson and Menikoff ”Triple Shock Entropy Theorem” Journal of Fluid Mechanics 366 (1998)
pp. 179–210.

24The effect of the equation of state on the maximum and other parameters at this state is unknown
at this moment and there are more works underway.
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only possible reaction is by a normal shock which occurs at some distance from the
body. This shock is referred to as the detach shock. The detached shock’s distance
from the body is a complex analysis and should be left to graduate class and researchers
in this area. Nevertheless, a graph and a general explanation to engineers is provided.
Even though this topic has few applications, some might be used in certain situations
which the author isn’t aware of.
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M > 1

Supersonic Area
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Fig. -14.14. The schematic for a round–tip bul-
let in a supersonic flow.

Analysis of the detached shock can
be carried out by looking at a body with a
round section moving in a supersonic flow
(the absolute velocity isn’t important for
this discussion). Figure 14.14 exhibits a
round–tip bullet with a detached shock.
The distance of the detachment is deter-
mined to a large degree by the upstream
Mach number. The zone A is zone where
the flow must be subsonic because at the
body the velocity must be zero (the no–
slip condition). In such a case, the gas
must go through a shock. While at zone
C the flow must be supersonic. The weak
oblique shock is predicted to flow around
the cone. The flow in zone A has to go
through some acceleration to became supersonic flow. The explanation to such a phe-
nomenon is above the level of this book (where is the “throat” area question25. Yet,
it can be explained as the subsonic is “sucked” into gas in zone C. Regardless of the
explanation, these calculations can be summarized by the flowing equation

detachment distance

body thickness
= constant× (θ − f(M∞)) (14.64)

where f(M∞) is a function of the upstream Mach number which tabulated in the
literature.

The constant and the function are different for different geometries. As a general
rule, the increase in the upstream Mach results in a decrease of the detachment distance.
Larger shock results in a smaller detachment distance, or, alternatively, the flow becomes
“blinder” to obstacles. Thus, this phenomenon has a larger impact for a relatively
smaller supersonic flow.

14.5.1 Issues Related to the Maximum Deflection Angle

The issue of maximum deflection has a practical application aside from the obvious
configuration used as a typical simple example. In the typical example, a wedge or a
cone moves into a still medium or gas flows into it. If the deflection angle exceeds the
maximum possible, a detached shock occurs. However, there are configurations in which

25See example 14.6.
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Fig. -14.15. The schematic for a symmetrical suction section with Mach reflection.

a detached shock occurs in design and engineers need to take it into consideration. Such
configurations seem sometimes at first glance not related to the detached shock issue.
Consider, for example, a symmetrical suction section in which the deflection angle is
just between the maximum deflection angle and above half of the maximum deflection
angle. In this situation, at least two oblique shocks occur and after their interaction is
shown in Figure (14.15). No detached shock issues are raised when only the first oblique
shock is considered. However, the second oblique shock complicates the situation and
the second oblique shock can cause a detached shock. This situation is referred to in
the scientific literature as the Mach reflection.

oblique shocks

U

A

B C

sub sonic
flow

θ1 δ1

Fig. -14.16. The “detached” shock in a com-
plicated configuration sometimes referred to as
Mach reflection.

It can be observed that the maxi-
mum of the oblique shock for the per-
fect gas model depends only on the up-
stream Mach number i.e., for every up-
stream Mach number there is only one
maximum deflection angle.

δmax = f(M1) (14.65)

Additionally, it can be observed for
a maximum oblique shock that a constant
deflection angle decrease of the Mach
number results in an increase of Mach an-
gle (weak shock only) M1 > M2 =⇒ θ1 < θ2. The Mach number decreases after every
shock. Therefore, the maximum deflection angle decreases with a decrease the Mach
number. Additionally, due to the symmetry a slip plane angle can be guessed to be
parallel to original flow, hence δ1 = δ2. Thus, this situation causes the detached shock
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to appear in the second oblique shock. This detached shock manifested itself in a form
of curved shock (see Figure 14.16).

The analysis of this situation is logically very simple, yet the mathematics is
somewhat complicated. The maximum deflection angle in this case is, as before, only
a function of the upstream Mach number. The calculations for such a case can be
carried out by several approaches. It seems that the most straightforward method is
the following:

(a) Calculate M1B ;

(b) Calculate the maximum deflection angle, θ2, utilizing (14.36) equation

(c) Calculate the deflection angle, δ2 utilizing equation (14.12)

(d) Use the deflection angle, δ2 = δ1 and the Mach number M1B to calculate M1B .
Note that no maximum angle is achieved in this shock. Potto–GDC can be used
to calculate this ratio.

This procedure can be extended to calculate the maximum incoming Mach number, M1

by checking the relationship between the intermediate Mach number to M1.
In discussing these issues, one must be aware that there are zones of dual solutions

in which sharp shock line coexists with a curved line. In general, this zone increases
as Mach number increases. For example, at Mach 5 this zone is 8.5◦. For engineering
purposes when the Mach number reaches this value, it can be ignored.

14.5.2 Oblique Shock Examples

Example 14.3:
Air flows at Mach number (M1) or Mx = 4 is approaching a wedge. What is the
maximum wedge angle at which the oblique shock can occur? If the wedge angle is
20◦, calculate the weak, the strong Mach numbers, and the respective shock angles.

Solution

The maximum wedge angle for (Mx = 4) D has to be equal to zero. The wedge angle
that satisfies this requirement is by equation (14.28) (a side to the case proximity of
δ = 0). The maximum values are:

Mx My δmax θmax

4.0000 0.97234 38.7738 66.0407

To obtain the results of the weak and the strong solutions either utilize the equa-
tion (14.28) or the GDC which yields the following results

Mx Mys Myw θs θw δ

4.0000 0.48523 2.5686 1.4635 0.56660 0.34907
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End Solution

δ

θ

Fig. -14.17. Oblique shock occurs around a cone. This photo is courtesy of Dr. Grigory Toker,
a Research Professor at Cuernavaco University of Mexico. According to his measurement, the
cone half angle is 15◦ and the Mach number is 2.2.

Example 14.4:
A cone shown in Figure (14.17) is exposed to supersonic flow and create an oblique
shock. Is the shock shown in the photo weak or strong shock? Explain. Using the
geometry provided in the photo, predict at which Mach number was the photo taken
based on the assumption that the cone is a wedge.

Solution

The measurement shows that cone angle is 14.43◦ and the shock angle is 30.099◦.
With given two angles the solution can be obtained by utilizing equation (14.59) or the
Potto-GDC.

M1 Mys Myw θs θw δ
P0y

P0x

3.2318 0.56543 2.4522 71.0143 30.0990 14.4300 0.88737

Because the flow is around the cone it must be a weak shock. Even if the cone was
a wedge, the shock would be weak because the maximum (transition to a strong shock)
occurs at about 60◦. Note that the Mach number is larger than the one predicted by
the wedge.

End Solution

14.5.3 Application of Oblique Shock

One of the practical applications of the oblique shock is the design of an inlet suction
for a supersonic flow. It is suggested that a series of weak shocks should replace one
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Fig. -14.18. Maximum values of the properties in an oblique shock.

normal shock to increase the efficiency (see Figure (14.19))26. Clearly, with a proper
design, the flow can be brought to a subsonic flow just below M = 1. In such a case,
there is less entropy production (less pressure loss). To illustrate the design significance
of the oblique shock, the following example is provided.

Example 14.5:

7
◦oblique sho
ks�2 7

◦

Normal shock
1

2 3 4

neglect
the detached

distance

α1

Fig. -14.20. Schematic for Example (14.5).

The Section described in Figure 14.19 and
14.20 air is flowing into a suction sec-
tion at M = 2.0, P = 1.0[bar], and
T = 17◦C. Compare the different condi-
tions in the two different configurations.
Assume that only a weak shock occurs.

Solution

26In fact, there is general proof that regardless to the equation of state (any kind of gas), the entropy
is to be minimized through a series of oblique shocks rather than through a single normal shock. For
details see Henderson and Menikoff “Triple Shock Entropy Theorem,” Journal of Fluid Mechanics 366,
(1998) pp. 179–210.
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normal shock

oblique shock

α1

α2

α3

Fig. -14.19. Two variations of inlet suction for supersonic flow.

The first configuration is of a normal shock for which the results27 are

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

2.0000 0.57735 1.6875 2.6667 4.5000 0.72087

In the oblique shock, the first angle shown is

Mx Mys Myw θs θw δ
P0y

P0x

2.0000 0.58974 1.7498 85.7021 36.2098 7.0000 0.99445

and the additional information by the minimal info in the Potto-GDC is

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

2.0000 1.7498 36.2098 7.0000 1.2485 1.1931 0.99445

In the new region, the new angle is 7◦ + 7◦ with new upstream Mach number of
Mx = 1.7498 resulting in

Mx Mys Myw θs θw δ
P0y

P0x

1.7498 0.71761 1.2346 76.9831 51.5549 14.0000 0.96524

27The results in this example are obtained using the graphical interface of POTTO–GDC thus, no
input explanation is given. In the past the input file was given but the graphical interface it is no longer
needed.
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And the additional information is

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

1.7498 1.5088 41.8770 7.0000 1.2626 1.1853 0.99549

An oblique shock is not possible and normal shock occurs. In such a case, the
results are:

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

1.2346 0.82141 1.1497 1.4018 1.6116 0.98903

With two weak shock waves and a normal shock the total pressure loss is

P04

P01

=
P04

P03

P03

P02

P02

P01

= 0.98903× 0.96524× 0.99445 = 0.9496

The static pressure ratio for the second case is

P4

P1
=

P4

P3

P3

P2

P2

P1
= 1.6116× 1.2626× 1.285 = 2.6147

The loss in this case is much less than in a direct normal shock. In fact, the loss
in the normal shock is above than 31% of the total pressure.

End Solution

Example 14.6:

Myw

Mys

A∗

10◦

Fig. -14.21.
Schematic for
Example (14.6).

A supersonic flow is approaching a very long two–dimensional
bland wedge body and creates a detached shock at Mach 3.5
(see Figure 14.21). The half wedge angle is 10◦. What is
the requited “throat” area ratio to achieve acceleration from
the subsonic region to the supersonic region assuming the
flow is one–dimensional?

Solution

The detached shock is a normal shock and the results are

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

3.5000 0.45115 3.3151 4.2609 14.1250 0.21295

Now utilizing the isentropic relationship for k = 1.4 yields
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M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

0.45115 0.96089 0.90506 1.4458 0.86966 1.2574

Thus the area ratio has to be 1.4458. Note that the pressure after the weak shock is
irrelevant to the area ratio between the normal shock and the “throat” according to the
standard nozzle analysis.

End Solution

Example 14.7:

0 1 2

4

weak
oblique
shock

Slip Plane

A

B

C

D

3

E

M1

P3 = P4

weak
oblique
shock

or expension
wave

Fig. -14.22. Schematic of two angles turn
with two weak shocks.

The effects of a double wedge are ex-
plained in the government web site as
shown in Figure 14.22. Adopt this de-
scription and assume that the turn of 6◦

is made of two equal angles of 3◦ (see
Figure 14.22). Assume that there are no
boundary layers and all the shocks are
weak and straight. Perform the calcula-
tion for M1 = 3.0. Find the required an-
gle of shock BE. Then, explain why this
description has internal conflict.

Solution

The shock BD is an oblique shock with a response to a total turn of 6◦. The conditions
for this shock are:

Mx Mys Myw θs θw δ
P0y

P0x

3.0000 0.48013 2.7008 87.8807 23.9356 6.0000 0.99105

The transition for shock AB is

Mx Mys Myw θs θw δ
P0y

P0x

3.0000 0.47641 2.8482 88.9476 21.5990 3.0000 0.99879

For the shock BC the results are

Mx Mys Myw θs θw δ
P0y

P0x

2.8482 0.48610 2.7049 88.8912 22.7080 3.0000 0.99894

And the isentropic relationships for M = 2.7049, 2.7008 are
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M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

2.7049 0.40596 0.10500 3.1978 0.04263 0.13632

2.7008 0.40669 0.10548 3.1854 0.04290 0.13665

The combined shocks AB and BC provide the base of calculating the total pressure
ratio at zone 3. The total pressure ratio at zone 2 is

P02

P00

=
P02

P01

P01

P00

= 0.99894× 0.99879 = 0.997731283

On the other hand, the pressure at 4 has to be

P4

P01

=
P4

P04

P04

P01

= 0.04290× 0.99105 = 0.042516045

The static pressure at zone 4 and zone 3 have to match according to the government
suggestion hence, the angle for BE shock which cause this pressure ratio needs to be
found. To do that, check whether the pressure at 2 is above or below or above the
pressure (ratio) in zone 4.

P2

P02

=
P02

P00

P2

P02

= 0.997731283× 0.04263 = 0.042436789

Since P2
P02

< P4
P01

a weak shock must occur to increase the static pressure (see Figure

6.4). The increase has to be

P3/P2 = 0.042516045/0.042436789 = 1.001867743

To achieve this kind of pressure ratio the perpendicular component has to be

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

1.0008 0.99920 1.0005 1.0013 1.0019 1.00000

The shock angle, θ can be calculated from

θ = sin−1 1.0008/2.7049 = 21.715320879◦

The deflection angle for such shock angle with Mach number is

Mx Mys Myw θs θw δ
P0y

P0x

2.7049 0.49525 2.7037 0.0 21.72 0.026233 1.00000
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From the last calculation it is clear that the government proposed schematic of
the double wedge is in conflict with the boundary condition. The flow in zone 3 will flow
into the wall in about 2.7◦. In reality the flow of double wedge will produce a curved
shock surface with several zones. Only when the flow is far away from the double wedge,
the flow behaves as only one theoretical angle of 6◦ exist.

End Solution

Example 14.8:
Calculate the flow deflection angle and other parameters downstream when the Mach
angle is 34◦ and P1 = 3[bar], T1 = 27◦C, and U1 = 1000m/sec. Assume k = 1.4 and
R = 287J/KgK.

Solution

The Mach angle of 34◦ is below maximum deflection which means that it is a weak
shock. Yet, the Upstream Mach number, M1, has to be determined

M1 =
U1√
k R T

=
1000

1.4× 287× 300
= 2.88

Using this Mach number and the Mach deflection in either using the Table or the figure
or POTTO-GDC results in

Mx Mys Myw θs θw δ
P0y

P0x

2.8800 0.48269 2.1280 0.0 34.00 15.78 0.89127

The relationship for the temperature and pressure can be obtained by using equation
(14.15) and (14.13) or simply converting the M1 to perpendicular component.

M1n = M1 ∗ sin θ = 2.88 sin(34.0) = 1.61

From the Table (6.2) or GDC the following can be obtained.

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

1.6100 0.66545 1.3949 2.0485 2.8575 0.89145

The temperature ratio combined upstream temperature yield

T2 = 1.3949× 300 ∼ 418.5K

and the same for the pressure

P2 = 2.8575× 3 = 8.57[bar]

And the velocity

Un2 = Myw

√
k R T = 2.128

√
1.4× 287× 418.5 = 872.6[m/sec]

End Solution
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Example 14.9:
For Mach number 2.5 and wedge with a total angle of 22◦, calculate the ratio of the
stagnation pressure.

Solution

Utilizing GDC for Mach number 2.5 and the angle of 11◦ results in

Mx Mys Myw θs θw δ
P0y

P0x

2.5000 0.53431 2.0443 85.0995 32.8124 11.0000 0.96873

End Solution

Example 14.10:
What is the maximum pressure ratio that can be obtained on wedge when the gas is
flowing in 2.5 Mach without any close boundaries? Would it make any difference if the
wedge was flowing into the air? If so, what is the difference?

Solution

It has to be recognized that without any other boundary condition, the shock is weak
shock. For a weak shock the maximum pressure ratio is obtained at the deflection
point because it is closest to a normal shock. To obtain the maximum point for 2.5
Mach number, either use the Maximum Deflection Mach number’s equation or the
Potto–GDC

Mx Mymax θmax δ
Py

Px

Ty

Tx

P0y

P0x

2.5000 0.94021 64.7822 29.7974 4.3573 2.6854 0.60027

In these calculations, Maximum Deflection Mach’s equation was used to calculate the
normal component of the upstream, then the Mach angle was calculated using the
geometrical relationship of θ = sin−1 M1n/M1. With these two quantities, utilizing
equation (14.12) the deflection angle, δ, is obtained.

End Solution
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Example 14.11:

1
2

3

θ

δ

M1 = 4

stream line

Fig. -14.23. Schematic for Example (14.11).

Consider the schematic shown in the fol-
lowing figure. Assume that the upstream
Mach number is 4 and the deflection an-
gle is δ = 15◦. Compute the pressure
ratio and the temperature ratio after the
second shock (sometimes referred to as
the reflective shock while the first shock
is called the incidental shock).

Solution

This kind of problem is essentially two wedges placed in a certain geometry. It is clear
that the flow must be parallel to the wall. For the first shock, the upstream Mach
number is known together with deflection angle. Utilizing the table or the Potto–GDC,
the following can be obtained:

Mx Mys Myw θs θw δ
P0y

P0x

4.0000 0.46152 2.9290 85.5851 27.0629 15.0000 0.80382

And the additional information by using minimal information ratio button in
Potto–GDC is

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

4.0000 2.9290 27.0629 15.0000 1.7985 1.7344 0.80382

With a Mach number of M = 2.929, the second deflection angle is also 15◦. With
these values the following can be obtained:

Mx Mys Myw θs θw δ
P0y

P0x

2.9290 0.51367 2.2028 84.2808 32.7822 15.0000 0.90041

and the additional information is

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

2.9290 2.2028 32.7822 15.0000 1.6695 1.5764 0.90041
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With the combined tables the ratios can be easily calculated. Note that hand calcula-
tions requires endless time looking up graphical representation of the solution. Utilizing
the POTTO–GDC which provides a solution in just a few clicks.

P1

P3
=

P1

P2

P2

P3
= 1.7985× 1.6695 = 3.0026

T1

T3
=

T1

T2

T2

T3
= 1.7344× 1.5764 = 2.632

End Solution

Example 14.12:
A similar example as before but here Mach angle is 29◦ and Mach number is 2.85.
Again calculate the downstream ratios after the second shock and the deflection angle.

Solution

Here the Mach number and the Mach angle are given. With these pieces of information
by utilizing the Potto-GDC the following is obtained:

Mx Mys Myw θs θw δ
P0y

P0x

2.8500 0.48469 2.3575 0.0 29.00 10.51 0.96263

and the additional information by utilizing the minimal info button in GDC provides

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

2.8500 2.3575 29.0000 10.5131 1.4089 1.3582 0.96263

With the deflection angle of δ = 10.51 the so called reflective shock gives the following
information

Mx Mys Myw θs θw δ
P0y

P0x

2.3575 0.54894 1.9419 84.9398 34.0590 10.5100 0.97569

and the additional information of

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

2.3575 1.9419 34.0590 10.5100 1.3984 1.3268 0.97569
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P1

P3
=

P1

P2

P2

P3
= 1.4089× 1.3984 ∼ 1.97

T1

T3
=

T1

T2

T2

T3
= 1.3582× 1.3268 ∼ 1.8021

End Solution

Example 14.13:
Compare a direct normal shock to oblique shock with a normal shock. Where will the
total pressure loss (entropy) be larger? Assume that upstream Mach number is 5 and
the first oblique shock has Mach angle of 30◦. What is the deflection angle in this case?

Solution

For the normal shock the results are

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

5.0000 0.41523 5.8000 5.0000 29.0000 0.06172

While the results for the oblique shock are

Mx Mys Myw θs θw δ
P0y

P0x

5.0000 0.41523 3.0058 0.0 30.00 20.17 0.49901

And the additional information is

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

5.0000 3.0058 30.0000 20.1736 2.6375 2.5141 0.49901

The normal shock that follows this oblique is

Mx My
Ty

Tx

ρy

ρx

Py

Px

P0y

P0x

3.0058 0.47485 2.6858 3.8625 10.3740 0.32671

The pressure ratios of the oblique shock with normal shock is the total shock in the
second case.

P1

P3
=

P1

P2

P2

P3
= 2.6375× 10.374 ∼ 27.36

T1

T3
=

T1

T2

T2

T3
= 2.5141× 2.6858 ∼ 6.75
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Note the static pressure raised is less than the combination shocks as compared to the
normal shock but the total pressure has the opposite result.

End Solution

Example 14.14:

stream line

0

2

1
slip plane

stream line

3

4

A

B

C

D

F

δ1

θ1

θ2

δ2

φ

Fig. -14.24. Illustration for Example (14.14).

A flow in a tunnel ends up with two de-
flection angles from both sides (see the
following Figure 14.14). For upstream
Mach number of 5 and deflection angle
of 12◦ and 15◦, calculate the pressure
at zones 3 and 4 based on the assump-
tion that the slip plane is half of the
difference between the two deflection
angles. Based on these calculations,
explain whether the slip angle is larger
or smaller than the difference of the
deflection angle.

Solution

The first two zones immediately after are computed using the same techniques that
were developed and discussed earlier.

For the first direction of 15◦ and Mach number =5.

Mx Mys Myw θs θw δ
P0y

P0x

5.0000 0.43914 3.5040 86.0739 24.3217 15.0000 0.69317

And the additional conditions are

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

5.0000 3.5040 24.3217 15.0000 1.9791 1.9238 0.69317

For the second direction of 12◦ and Mach number =5.

Mx Mys Myw θs θw δ
P0y

P0x

5.0000 0.43016 3.8006 86.9122 21.2845 12.0000 0.80600

And the additional conditions are
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Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

5.0000 3.8006 21.2845 12.0000 1.6963 1.6625 0.80600

The conditions in zone 4 and zone 3 have two things that are equal. They are the
pressure and the velocity direction. It has to be noticed that the velocity magnitudes in
zone 3 and 4 do not have to be equal. This non–continuous velocity profile can occur
in our model because it is assumed that fluid is non–viscous.

If the two sides were equal because of symmetry the slip angle is also zero. It
is to say, for the analysis, that only one deflection angle exist. For the two different
deflection angles, the slip angle has two extreme cases. The first case is where match
lower deflection angle and second is to match the higher deflection angle. In this case,
it is assumed that the slip angle moves half of the angle to satisfy both of the deflection
angles (first approximation). Under this assumption the conditions in zone 3 are solved
by looking at the deflection angle of 12◦ + 1.5◦ = 13.5◦ which results in

Mx Mys Myw θs θw δ
P0y

P0x

3.5040 0.47413 2.6986 85.6819 27.6668 13.5000 0.88496

with the additional information

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

3.5040 2.6986 27.6668 13.5000 1.6247 1.5656 0.88496

And in zone 4 the conditions are due to deflection angle of 13.5◦ and Mach 3.8006

Mx Mys Myw θs θw δ
P0y

P0x

3.8006 0.46259 2.9035 85.9316 26.3226 13.5000 0.86179

with the additional information

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

3.8006 2.9035 26.3226 13.5000 1.6577 1.6038 0.86179

From these tables the pressure ratio at zone 3 and 4 can be calculated

P3

P4
=

P3

P2

P2

P0

P0

P1

P1

P4
= 1.6247× 1.9791

1
1.6963

1
1.6038

∼ 1.18192
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To reduce the pressure ratio the deflection angle has to be reduced (remember that at
weak weak shock almost no pressure change). Thus, the pressure at zone 3 has to be
reduced. To reduce the pressure the angle of slip plane has to increase from 1.5◦ to a
larger number.

End Solution

Example 14.15:
The previous example gave rise to another question on the order of the deflection angles.
Consider the same values as previous analysis, will the oblique shock with first angle of
15◦ and then 12◦ or opposite order make a difference (M = 5)? If not what order will
make a bigger entropy production or pressure loss? (No general proof is needed).

Solution

Waiting for the solution
End Solution

14.5.4 Optimization of Suction Section Design

Under heavy construction please ignore

The question raised is what is the optimum design for inlet suction unit? There are
several considerations that have to be taken into account besides supersonic flow which
includes for example the material strength consideration and the operation factors.

The optimum deflection angle is a function of the Mach number range in which
the suction section is operated in. There are researchers which suggest that the
numerical work is the solution.

14.5.5 Retouch of Shock Drag or Wave Drag

stream lines

moving 
object

stationary control 
volume

ρ1
ρ2

U1 = 0
U1 6= 0

P1

A1 A2

P2

Fig. -14.25. The diagram that explains the shock drag effects of a moving shock considering
the oblique shock effects.
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Since it was established that the common explanation is erroneous and the steam
lines are bending/changing direction when they touching the oblique shock (compare
with figure (6.7)). The correct explanation is that increase of the momentum into
control volume is either requires increase of the force and/or results in acceleration of
gas. So, what is the effects of the oblique shock on the Shock Drag? Figure (14.25)
exhibits schematic of the oblique shock which show clearly that stream lines are bended.
There two main points that should be discussed in this context are the additional effects
and infinite/final structure. The additional effects are the mass start to have a vertical
component. The vertical component one hand increase the energy needed and thus
increase need to move the body (larger shock drag) (note the there is a zero momentum
net change for symmetrical bodies.). However, the oblique shock reduces the normal
component that undergoes the shock and hence the total shock drag is reduced. The
oblique shock creates a finite amount of drag (momentum and energy lost) while a
normal shock as indirectly implied in the common explanation creates de facto situation
where the shock grows to be infinite which of course impossible. It should be noted
that, oblique shock becomes less “oblique” and more parallel when other effects start
to kick in.

14.6 Summary

As with normal shock, the oblique shock with upstream Mach number, M1 is always
greater than 1. However, in oblique, as oppose to the normal shock, the downstream
Mach number, M2 could be larger or smaller then 1. The perpendicular component
of the downstream Mach number, M1n is always smaller than one (1). Given M1 and
the deflection angle, δ there could be three solutions: the first one is the “impossible”
solution in the case where D is negative, second is weak shock, and third is a strong
shock. When D is positive there is no physical solution and only normal shock exist.
When D is equal to zero, a special case is created because the weak and strong solutions
are equal (for large deflection angle). When D > 0, for large deflection angle, there is
a possibility of no two–dimensional solution resulting in a detached shock case.

14.7 Appendix: Oblique Shock Stability Analysis

Unstable

Stable

Fig. -14.27. Typical examples of unstable and
stable situations.

The stability analysis is an analysis which
answers the question of what happens if
for some reason, the situation moves away
from the expected solution. If the answer
turns out to be that the situation will re-
turn to its original state then it is referred
to as the stable situation. On the other
hand, if the answer is negative, then the
situation is referred to as unstable. An ex-
ample to this situation, is a ball shown in the Figure (14.27). Instinctively, the stable
and unstable can be recognized. There is also the situation where the ball is between
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the stable and unstable situations when the ball is on a plane field which is referred to
as the neutrally stable. In the same manner, the analysis for the oblique shock wave is
carried out. The only difference is that here, there are more than one parameter that
can be changed, for example, the shock angle, deflection angle, and upstream Mach
number. In this example only the weak solution is explained. The similar analysis can
be applied to strong shock. Yet, in that analysis it has to be remembered that when the
flow becomes subsonic the equation changes from hyperbolic to an elliptic equation.
This change complicates the explanation and is omitted in this section. Of course, in
the analysis the strong shock results in an elliptic solution (or region) as opposed to
a hyperbolic in weak shock. As results, the discussion is more complicated but similar
analysis can be applied to the strong shock.

∆δ
+

∆θ
+

∆θ
−

∆δ
−

Fig. -14.28. The schematic of stability analysis
for oblique shock.

The change in the inclination angle results
in a different upstream Mach number and
a different pressure. On the other hand, to
maintain the same direction stream lines,
the virtual change in the deflection angle
has to be in the opposite direction of the
change of the shock angle. The change
is determined from the solution provided
before or from the approximation (14.62).

∆θ =
k + 1

2
∆δ (14.66)

Equation (14.66) can be applied for either positive, ∆θ+ or negative ∆θ− values.
The pressure difference at the wall becomes a negative increment which tends to pull
the shock angle to the opposite direction. The opposite happens when the deflection
increment becomes negative, the deflection angle becomes positive which increases the
pressure at the wall. Thus, the weak shock is stable.
Please note that this analysis doesn’t apply to the case of the close proximity of the
δ = 0. In fact, the shock wave is unstable according to this analysis to one direction
but stable to the other direction. Yet, it must be pointed out that it doesn’t mean
that the flow is unstable but rather that the model is incorrect. There isn’t any known
experimental evidence to show that flow is unstable for δ = 0.
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Fig. -14.26. The relationship between the shock wave angle, θ and deflection angle, δ, and
Mach number for k=1.4. This figure was generate with GDC under command ./obliqueFigure
1.4. Variety of these figures can be found in the biggest gas tables in the world provided
separately in Potto Project.
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Prandtl-Meyer Function

15.1 Introduction

positive
angle
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Flow
direction

Fig. -15.1. The definition of the angle for
the Prandtl–Meyer function.

As discussed in Chapter 14 when the deflection
turns to the opposite direction of the flow, the
flow accelerates to match the boundary condi-
tion. The transition, as opposed to the oblique
shock, is smooth, without any jump in proper-
ties. Here because of the tradition, the de-
flection angle is denoted as a positive when it
is away from the flow (see Figure 15.1). In
a somewhat a similar concept to oblique shock
there exists a “detachment” point above which
this model breaks and another model has to
be implemented. Yet, when this model breaks
down, the flow becomes complicated, flow separation occurs, and no known simple
model can describe the situation. As opposed to the oblique shock, there is no lim-
itation for the Prandtl-Meyer function to approach zero. Yet, for very small angles,
because of imperfections of the wall and the boundary layer, it has to be assumed to
be insignificant.

M

√

M2
− 1

µ

1

c
Uµ

Fig. -15.2. The angles of the
Mach line triangle.

Supersonic expansion and isentropic compression
(Prandtl-Meyer function), are an extension of the Mach line
concept. The Mach line shows that a disturbance in a field
of supersonic flow moves in an angle of µ, which is defined
as (as shown in Figure 15.2)

µ = sin−1

(
1
M

)
(15.1)

373
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or

µ = tan−1 1√
M1 − 1

(15.2)

A Mach line results because of a small disturbance in the wall contour. This Mach line
is assumed to be a result of the positive angle. The reason that a “negative” angle is
not applicable is that the coalescing of the small Mach wave which results in a shock
wave. However, no shock is created from many small positive angles.

The Mach line is the chief line in the analysis because of the wall contour shape
information propagates along this line. Once the contour is changed, the flow direction
will change to fit the wall. This direction change results in a change of the flow
properties, and it is assumed here to be isotropic for a positive angle. This assumption,
as it turns out, is close to reality. In this chapter, a discussion on the relationship
between the flow properties and the flow direction is presented.

15.2 Geometrical Explanation

M
ac

h 
lin

e

x

(90−µ)

µ
µ

dν dyU+dU

U
y +dU

yU

Uy
Ux

(U+dU) cos(dµ)−U

dx=dUy cos(90−µ)

Fig. -15.3. The schematic of the turn-
ing flow.

The change in the flow direction is assume to be
result of the change in the tangential component.
Hence, the total Mach number increases. There-
fore, the Mach angle increase and result in a change
in the direction of the flow. The velocity compo-
nent in the direction of the Mach line is assumed
to be constant to satisfy the assumption that the
change is a result of the contour only. Later, this
assumption will be examined. The typical simplifi-
cations for geometrical functions are used:

dν ∼ sin(dν);

cos(dν) ∼ 1
(15.3)

These simplifications are the core reasons why the change occurs only in the perpen-
dicular direction (dν << 1). The change of the velocity in the flow direction, dx
is

dx = (U + dU) cos ν − U = dU (15.4)

In the same manner, the velocity perpendicular to the flow, dy, is

dy = (U + dU) sin(dν) = Udν (15.5)

The tan µ is the ratio of dy/dx (see Figure (15.3))

tanµ =
dx

dy
=

dU

Udν
(15.6)
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The ratio dU/U was shown to be

dU

U
=

dM2

2M2
(
1 + k−1

2 M2
) (15.7)

Combining equations (15.6) and (15.7) transforms it into

dν = −
√

M2 − 1dM2

2M2
(
1 + k−1

2 M2
) (15.8)

After integration of equation (15.8) becomes

ν(M) = −
√

k+1
k−1 tan−1

√
k−1
k+1 (M2 − 1)

+ tan−1
√

(M2 − 1) + constant

Turnning Angle

(15.9)

The constant can be chosen in a such a way that ν = 0 at M = 1.

15.2.1 Alternative Approach to Governing Equations

back
Mach
line

Front
Mach
lineθ

r
Ur

Uθ

Fig. -15.4. The schematic of the coordinate
based on the mathematical description.

In the previous section, a simplified ver-
sion was derived based on geometrical ar-
guments. In this section, a more rigorous
explanation is provided. It must be recog-
nized that here the cylindrical coordinates
are advantageous because the flow turns
around a single point.

For this coordinate system, the mass
conservation can be written as

∂ (ρrUr)
∂r

+
∂ (ρUθ)

∂θ
= 0 (15.10)

The momentum equations are expressed as

Ur
∂Ur

∂r
+

Uθ

r

∂Ur

∂θ
− Uθ

2

r
= −1

ρ

∂P

∂r
= −c2

ρ

∂ρ

∂r
(15.11)

and

Ur
∂Uθ

∂r
+

Uθ

r

∂Uθ

∂θ
− UθUr

r
= − 1

rρ

∂P

∂θ
= − c2

rρ

∂ρ

∂θ
(15.12)

If the assumption is that the flow isn’t a function of the radius, r, then all the derivatives
with respect to the radius will vanish. One has to remember that when r enters to the
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function, like the first term in the mass equation, the derivative isn’t zero. Hence, the
mass equation is reduced to

ρUr +
∂ (ρUθ)

∂θ
= 0 (15.13)

Equation (15.13) can be rearranged as transformed into

− 1
Uθ

(
Ur +

∂Uθ

∂θ

)
=

1
ρ

∂ρ

∂θ
(15.14)

The momentum equations now obtain the form of

Uθ

r

∂Ur

∂θ
− Uθ

2

r
= 0

Uθ

(
∂Ur

∂θ
− Uθ

)
= 0

(15.15)

Uθ

r

∂Uθ

∂θ
− Uθ Ur

r
= − c2

rρ

∂ρ

∂θ

Uθ

(
∂Uθ

∂θ
− Ur

)
= −c2

ρ

∂ρ

∂θ

(15.16)

Substituting the term 1
ρ

∂ρ
∂θ from equation (15.14) into equation (15.16) results in

Uθ

(
∂Uθ

∂θ
− Ur

)
=

c2

Uθ

(
Ur +

∂Uθ

∂θ

)
(15.17)

or

Uθ
2

(
Ur +

∂Uθ

∂θ

)
= c2

(
Ur +

∂Uθ

∂θ

)
(15.18)

And an additional rearrangement results in

(
c2 − Uθ

2
) (

Ur +
∂Uθ

∂θ

)
= 0 (15.19)

From equation (15.19) it follows that

Uθ = c (15.20)

It is remarkable that the tangential velocity at every turn is at the speed of sound!
It must be pointed out that the total velocity isn’t at the speed of sound, but only
the tangential component. In fact, based on the definition of the Mach angle, the
component shown in Figure (15.3) under Uy is equal to the speed of sound, M = 1.
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After some additional rearrangement, equation (15.15) becomes

Uθ

r

(
∂Ur

∂θ
− Uθ

)
= 0 (15.21)

If r isn’t approaching infinity, ∞ and since Uθ 6= 0 leads to

∂Ur

∂θ
= Uθ (15.22)

In the literature, these results are associated with the characteristic line. This analysis
can be also applied to the same equation when they are normalized by Mach number.
However, the non–dimensionalization can be applied at this stage as well.

The energy equation for any point on a stream line is

h(θ) +
Uθ

2 + Ur
2

2
= h0 (15.23)

Enthalpy in perfect gas with a constant specific heat, k, is

h(θ) = Cp T = Cp
R

R
T =

1
(k − 1)

c(θ)2︷ ︸︸ ︷
k︷︸︸︷

Cp

Cv
R T =

c2

k − 1
(15.24)

and substituting this equality, equation (15.24), into equation (15.23) results in

c2

k − 1
+

Uθ
2 + Ur

2

2
= h0 (15.25)

Utilizing equation (15.20) for the speed of sound and substituting equation (15.22)
which is the radial velocity transforms equation (15.25) into

(
∂Ur

∂θ

)2

k − 1
+

(
∂Ur

∂θ

)2

+ Ur
2

2
= h0 (15.26)

After some rearrangement, equation (15.26) becomes

k + 1
k − 1

(
∂Ur

∂θ

)2

+ Ur
2 = 2h0 (15.27)

Note that Ur must be positive. The solution of the differential equation (15.27) incor-
porating the constant becomes

Ur =
√

2h0 sin

(
θ

√
k − 1
k + 1

)
(15.28)
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which satisfies equation (15.27) because sin2 θ + cos2 θ = 1. The arbitrary constant in
equation (15.28) is chosen such that Ur(θ = 0) = 0. The tangential velocity obtains
the form

Uθ = c =
∂Ur

∂θ
=

√
k − 1
k + 1

√
2 h0 cos

(
θ

√
k − 1
k + 1

)
(15.29)

The Mach number in the turning area is

M2 =
Uθ

2 + Ur
2

c2
=

Uθ
2 + Ur

2

Uθ
2 = 1 +

(
Ur

Uθ

)2

(15.30)

Now utilizing the expression that was obtained for Ur and Uθ equations (15.29) and
(15.28) results for the Mach number is

M2 = 1 +
k + 1
k − 1

tan2

(
θ

√
k − 1
k + 1

)
(15.31)

or the reverse function for θ is

θ =

√
k + 1
k − 1

tan−1

(√
k − 1
k + 1

(
M2 − 1

)
)Reverse Angle

(15.32)

What happens when the upstream Mach number is not 1? That is when the
initial condition for the turning angle doesn’t start with M = 1 but is already at a
different angle. The upstream Mach number is denoted in this segment as Mstarting.
For this upstream Mach number (see Figure (15.2))

tan ν =
√

Mstarting
2 − 1 (15.33)

The deflection angle ν, has to match to the definition of the angle that is chosen here
(θ = 0 when M = 1), so

ν(M) = θ(M)− θ(Mstarting) (15.34)

ν(M) =

√
k + 1
k − 1

tan−1

(√
k − 1
k + 1

√
M2 − 1

)
− tan−1

√
M2 − 1

Deflection Angle

(15.35)

These relationships are plotted in Figure (15.6).



15.3. THE MAXIMUM TURNING ANGLE 379

15.2.2 Comparison And Limitations between the Two Approaches

The two models produce exactly the same results, but the assumptions for the construc-
tion of these models are different. In the geometrical model, the assumption is that the
velocity change in the radial direction is zero. In the rigorous model, it was assumed
that radial velocity is only a function of θ. The statement for the construction of the
geometrical model can be improved by assuming that the frame of reference is moving
radially in a constant velocity.

Regardless of the assumptions that were used in the construction of these models,
the fact remains that there is a radial velocity at Ur(r = 0) = constant. At this point
(r = 0) these models fail to satisfy the boundary conditions and something else happens
there. On top of the complication of the turning point, the question of boundary layer
arises. For example, how did the gas accelerate to above the speed of sound when
there is no nozzle (where is the nozzle?)? These questions are of interest in engineering
but are beyond the scope of this book (at least at this stage). Normally, the author
recommends that this function be used everywhere beyond 2-4 the thickness of the
boundary layer based on the upstream length.

In fact, analysis of design commonly used in the industry and even questions
posted to students show that many assume that the turning point can be sharp. At a
small Mach number, (1 + ε) the radial velocity is small ε. However, an increase in the
Mach number can result in a very significant radial velocity. The radial velocity is “fed”
through the reduction of the density. Aside from its close proximity to turning point,
mass balance is maintained by the reduction of the density. Thus, some researchers
recommend that, in many instances, the sharp point should be replaced by a smoother
transition.

15.3 The Maximum Turning Angle

Maximum
turning

slip line

Fig. -15.5. Expansion of Prandtl-
Meyer function when it exceeds the
maximum angle.

The maximum turning angle is obtained when the
starting Mach number is 1 and the end Mach num-
ber approaches infinity. In this case, Prandtl–Meyer
function becomes

ν∞ =
π

2

[√
k + 1
k − 1

− 1

]
Maximum Turning Angle

(15.36)

The maximum of the deflection point and the
maximum turning point are only a function of the specific heat ratios. However, the
maximum turning angle is much larger than the maximum deflection point because the
process is isentropic.

What happens when the deflection angel exceeds the maximum angle? The flow
in this case behaves as if there is almost a maximum angle and in that region beyond
the flow will became vortex street see Figure (15.5)
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15.4 The Working Equations for the Prandtl-Meyer Function
The change in the deflection angle is calculated by

ν2 − ν1 = ν(M2)− ν(M1) (15.37)
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Fig. -15.6. The angle as a function of the Mach number and spesfic heat.

15.5 d’Alembert’s Paradox 1 2

3

4

1 2

3

4

θ1

θ1

θ2

θ2

W

Fig. -15.7. A simplified diamond shape
to illustrate the supersonic d’Alembert’s
Paradox.

In ideal inviscid incompressible flows, the
movement of body does not encounter any re-
sistance. This result is known as d’Alembert’s
Paradox, and this paradox is examined here.

Supposed that a two–dimensional diamond–
shape body is stationed in a supersonic flow as
shown in Figure (15.7). Again, it is assumed
that the fluid is inviscid. The net force in flow
direction, the drag, is

D = 2
(w

2
(P2 − P4)

)
= w (P2 − P4)

(15.38)

It can be observed that only the area that “seems” to be by the flow was used
in expressing equation (15.38). The relation between P2 and P4 is such that the flow
depends on the upstream Mach number, M1, and the specific heat, k. Regardless in the
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equation of the state of the gas, the pressure at zone 2, P2, is larger than the pressure
at zone 4, P4. Thus, there is always drag when the flow is supersonic which depends on
the upstream Mach number, M1, specific heat, k, and the “visible” area of the object.
This drag is known in the literature as (shock) wave drag.

15.6 Flat Body with an Angle of Attack

Slip plane

7

5

6

4

3

21

α

ℓ
e

Fig. -15.8. The definition of attack
angle for the Prandtl–Meyer function.

Previously, the thickness of a body was shown to
have a drag. Now, a body with zero thickness but
with an angle of attack will be examined. As op-
posed to the thickness of the body, in addition to
the drag, the body also obtains lift. Again, the
slip condition is such that the pressure in region 5
and 7 are the same, and additionally the direction
of the velocity must be the same. As before, the
magnitude of the velocity will be different between
the two regions.

15.7 Examples For Prandtl–Meyer Function

Example 15.1:

U=450 [m/sec]

T=20
◦
C

µ1

x1=0.1 [m]

µ2

x1=?

M=?

∆ν =20
◦

Fig. -15.9. Schematic for Example (14.5).

A wall is included with 20.0◦ an inclina-
tion. A flow of air with a temperature
of 20◦C and a speed of U = 450m/sec
flows (see Figure 15.9). Calculate the
pressure reduction ratio, and the Mach
number after the bending point. If the
air flows in an imaginary two–dimensional
tunnel with width of 0.1[m] what will the
width of this imaginary tunnel after the
bend? Calculate the “fan” angle. As-
sume the specific heat ratio is k = 1.4.

Solution

First, the initial Mach number has to be calculated (the initial speed of sound).

a =
√

k R T =
√

1.4 ∗ 287 ∗ 293 = 343.1m/sec

The Mach number is then

M =
450

343.1
= 1.31

this Mach number is associated with
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M ν P
P0

T
T0

ρ
ρ0

µ

1.3100 6.4449 0.35603 0.74448 0.47822 52.6434

The “new” angle should be

ν2 = 6.4449 + 20 = 26.4449◦

and results in

M ν P
P0

T
T0

ρ
ρ0

µ

2.0024 26.4449 0.12734 0.55497 0.22944 63.4620

Note that P01 = P02

P2

P1
=

P01

P1

P2

P02

=
0.12734
0.35603

= 0.35766

The “new” width can be calculated from the mass conservation equation.

ρ1x1M1c1 = ρ2x2M2c2 =⇒ x2 = x1
ρ1

ρ2

M1

M2

√
T1

T2

x2 = 0.1× 0.47822
0.22944

× 1.31
2.0024

√
0.74448
0.55497

= 0.1579[m]

Note that the compression “fan” stream lines are note and their function can be obtain
either by numerical method of going over small angle increments. The other alternative
is using the exact solution1. The expansion “fan” angle changes in the Mach angle
between the two sides of the bend

fan angle = 63.4 + 20.0− 52.6 = 30.8◦

End Solution

Reverse the example, and this time the pressure on both sides are given and the
angle has to be obtained2.

1It isn’t really different from this explanation but shown in a more mathematical form, due to Landau
and friends. It will be presented in the future version. It isn’t present now because of the low priority
to this issue.

2This example is for academic understanding. There is very little with practicality in this kind of
problem.
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Example 15.2:

P=1.2[Bar]

µ1

µ2

M= 1.4?

P=1.0[Bar]

Fig. -15.10. Schematic for Example
(14.5).

Gas with k = 1.67 flows over bend (see
Figure 15.2). The gas flow with Mach 1.4
and Pressure 1.2[Bar]. It is given that the
pressure after the turning is 1[Bar]. Com-
pute the Mach number after the bend, and
the bend angle.

Solution

The Mach number is determined by satisfying the condition that the pressure down-
stream and the Mach are given. The relative pressure downstream can be calculated by
the relationship

P2

P02

=
P2

P1

P1

P01

=
1

1.2
× 0.31424 = 0.2619

M ν P
P0

T
T0

ρ
ρ0

µ

1.4000 7.7720 0.28418 0.60365 0.47077 54.4623

With this pressure ratio P̄ = 0.2619 require either locking in the table or using the
enclosed program.

M ν P
P0

T
T0

ρ
ρ0

µ

1.4576 9.1719 0.26190 0.58419 0.44831 55.5479

For the rest of the calculation the initial condition is used. The Mach number after the
bend is M = 1.4576. It should be noted that specific heat isn’t k = 1.4 but k = 1.67.
The bend angle is

∆ν = 9.1719− 7.7720 ∼ 1.4◦

∆µ = 55.5479− 54.4623 = 1.0◦

End Solution

15.8 Combination of the Oblique Shock and Isentropic Ex-
pansion

Example 15.3:
Consider two–dimensional flat thin plate at an angle of attack of 4◦ and a Mach number
of 3.3. Assume that the specific heat ratio at stage is k = 1.3, calculate the drag
coefficient and lift coefficient.
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Solution

For M = 3.3, the following table can be obtained:

M ν P
P0

T
T0

ρ
ρ0

µ

3.3000 62.3113 0.01506 0.37972 0.03965 73.1416

With the angle of attack the region 3 will be at ν ∼ 62.31 + 4 for which the following
table can be obtained (Potto-GDC)

M ν P
P0

T
T0

ρ
ρ0

µ

3.4996 66.3100 0.01090 0.35248 0.03093 74.0528

On the other side, the oblique shock (assuming weak shock) results in

Mx Mys Myw θs θw δ
P0y

P0x

3.3000 0.43534 3.1115 88.9313 20.3467 4.0000 0.99676

and the additional information, by clicking on the minimal button, provides

Mx Myw θw δ
Py

Px

Ty

Tx

P0y

P0x

3.3000 3.1115 20.3467 4.0000 1.1157 1.1066 0.99676

The pressure ratio at point 3 is

P3

P1
=

P3

P03

P03

P01

P01

P1
= 0.0109× 1× 1

0.01506
∼ 0.7238

The pressure ratio at point 4 is
P3

P1
= 1.1157

dL =
2

kP1M1
2 (P4 − P3) cos α =

2
kM1

2

(
P4

P1
− P3

P1

)
cosα

dL =
2

1.33.32
(1.1157− 0.7238) cos 4◦ ∼ .054

dd =
2

kM1
2

(
P4

P1
− P3

P1

)
sin α =

2
1.33.32

(1.1157− 0.7238) sin 4◦ ∼ .0039

This shows that on the expense of a small drag, a large lift can be obtained. Discussion
on the optimum design is left for the next versions.

End Solution
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Slip lines
expenssion

lines

A∗

Aexit β

β

Mjet1

Psurroundings

Fig. -15.11. Schematic of the nozzle and Prandtl–Meyer expansion.

Example 15.4:
To understand the flow after a nozzle consider a flow in a nozzle shown in Figure
15.4. The flow is choked and additionally the flow pressure reaches the nozzle exit
above the surrounding pressure. Assume that there is an isentropic expansion (Prandtl–
Meyer expansion) after the nozzle with slip lines in which there is a theoretical angle
of expansion to match the surroundings pressure with the exit. The ratio of exit area
to throat area ratio is 1:3. The stagnation pressure is 1000 [kPa]. The surroundings
pressure is 100[kPa]. Assume that the specific heat, k = 1.3. Estimate the Mach
number after the expansion.

Solution

The Mach number a the nozzle exit can be calculated using Potto-GDC which provides

M T
T0

ρ
ρ0

A
A?

P
P0

A×P
A∗×P0

F
F∗

1.7632 0.61661 0.29855 1.4000 0.18409 0.25773 0.57478

Thus the exit Mach number is 1.7632 and the pressure at the exit is

Pexit = P0
P − exit

P − 0
= 1000× 0.18409 = 184.09[kPa]

This pressure is higher than the surroundings pressure and additional expansion must
occur. This pressure ratio is associated with a expansion angle that Potto-GDC provide
as

M ν P
P0

T
T0

ρ
ρ0

µ

1.7632 19.6578 0.18409 0.61661 0.29855 60.4403
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The need additional pressure ratio reduction is

Psurroundings

P0
=

Psurroundings

Pexit

Pexit

P0
=

100
184.09

× 0.18409 = 0.1

Potto-GDC provides for this pressure ratio

M ν P
P0

T
T0

ρ
ρ0

µ

2.1572 30.6147 0.10000 0.51795 0.19307 65.1292

The change of the angle is

∆angle = 30.6147− 19.6578 = 10.9569

Thus the angle, β is
β = 90− 10.9569 ∼ 79.0

The pressure at this point is as the surroundings. However, the stagnation pressure is
the same as originally was enter the nozzle! This stagnation pressure has to go through
serious of oblique shocks and Prandtl-Meyer expansion to match the surroundings stag-
nation pressure.

End Solution



APPENDIX A

Computer Program

A.1 About the Program

The program is written in a C++ language. This program was used to generate all the
data in this book. Some parts of the code are in FORTRAN (old code especially for
chapters 12 and 13 and not included here.1. The program has the base class of basic
fluid mechanics and utilities functions to calculate certain properties given data. The
derived class are Fanno, isothermal, shock and others.

At this stage only the source code of the program is available no binary available.
This program is complied under gnu g++ in /Gnu/Linux system. As much support
as possible will be provided if it is in Linux systems. NO Support whatsoever will be
provided for any Microsoft system. In fact even PLEASE do not even try to use this
program under any Microsoft window system.

A.2 Usage

To use the program some information has to be provided. The necessary input param-
eter(s), the kind of the information needed, where it has to be in a LATEX format or not,

1when will be written in C++ will be add to this program.

387
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and in many case where it is a range of parameter(s). machV The Mach number and it is used in stagnation class

fldV The 4fL
D and it is used in Fanno class isothermal class

p2p1V The pressure ratio of the two sides of the tubes

M1V Entrance Mach M1 to the tube Fanno and isothermal classes

M1ShockV Entrance Mach M1 when expected shock to the tube
Fanno and isothermal classes

FLDShockV FLD with shock in the in Fanno class

M1fldV both M1 and 4fL
D are given

M1fldP2P1V three part info P1
P2

, M1 and 4fL
D are given

MxV Mx or My

infoStagnation print standard (stagnation) info

infoStandard standard info for (Fanno, shock etc)

infoTube print tube side info for (Fanno, etc) including

infoShock print shock sides info

infoTubeShock print tube info shock main info

infoTubeProfile the Mach number and pressure ratio profiles

infoTubeShockLimits print tube limits with shock

To get the shock results in LATEX of Mx The following lines have to be inserted
in the end of the main function.

int isTex = yes;
int isRange = no;
whatInfo = infoStandard ;
variableName = MxV;
Mx = 2.0 ;
s.makeTable(whatInfo, isRange, isTex, variableName, variableValue);

*******************************************
The following stuff is the same as above/below
if you use showResults with showHeads but the
information is setup for the latex text processing.
You can just can cut and paste it in your latex file.
You must use longtable style file and dcolumn
style files.
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*******************************************
\setlongtables
\begin{longtable}
{|D..{1.4}|D..{1.4}|D..{1.4}|D..{1.4}|D..{1.4}|D..{1.4}|D..{1.4}|}
\caption{ ?? \label{?:tab:?}}\\
\hline
\multicolumn{1}{|c|} {$\rule[-0.1in]{0.pt}{0.3 in}\mathbf{M} $} &
\multicolumn{1}{|c|} {$\mathbf{4fL \over D} $} &
\multicolumn{1}{|c|} {$\mathbf{P \over P^{*}} $} &
\multicolumn{1}{|c|} {$\mathbf{P_0 \over {P_0}^{*}} $} &
\multicolumn{1}{|c|} {$\mathbf{\rho \over \rho^{*}} $} &
\multicolumn{1}{|c|} {$\mathbf{U \over {U}^{*}} $} &
\multicolumn{1}{|c|} {$\mathbf{T \over T^{*}} $}

\\\hline

\endfirsthead
\caption{ ?? (continue)} \\\hline
\multicolumn{1}{|c|} {$\rule[-0.1in]{0.pt}{0.3 in}\mathbf{M} $} &
\multicolumn{1}{|c|} {$\mathbf{4fL \over D} $} &
\multicolumn{1}{|c|} {$\mathbf{P \over P^{*}} $} &
\multicolumn{1}{|c|} {$\mathbf{P_0 \over {P_0}^{*}} $} &
\multicolumn{1}{|c|} {$\mathbf{\rho \over \rho^{*}} $} &
\multicolumn{1}{|c|} {$\mathbf{U \over {U}^{*}} $} &
\multicolumn{1}{|c|} {$\mathbf{T \over T^{*}} $}

\\\hline
\endhead

2.176& 2.152& 0.3608& 1.000& 0.5854& 3.773& 0.6164 \\
\hline\end{longtable}

A.3 Program listings
Can be download from www.potto.org.
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Fig. -A.1. Schematic diagram that explains the structure of the program



APPENDIX B

Oblique Shock History

The oblique shock is dealing with a physical phenomenon of the flow of compressible
substance above supersonic velocity over positive inclined plane. When the incline angle
is negative (the plane turn away from the flow) the flow turn around the corner without
a shock (Prandtl-Meyer Flow). The question when the flow undergoes a oblique shock
or when the Prandtl–Meyer flow occur was never really settled. Additionally, when the
incline plane angle increase above a certain value the oblique shock turns into detached
shock (different kind shock). The detached shock is a shock that does not touch
the body (which affects the resistance). While the value was known, there was no
mathematical explanations for it.

During the World War Two, there was importance to having airplane flying
faster than the speed of sound which is physical barrier that was cause by the shock.
There are several kinds of shocks and some view the most important as the oblique
shock. Consequently, many governments and agencies pour money to delve this phe-
nomenon.

NASA sponsor researched into this problems and produced a famous report
known as NACA 1135 which declared that the oblique shock’s problem no analytical
solution can be obtained. Since this challenge declaration was put into the open,
countless people have attempted to solve it. And in the tradition of compressible
flow, everything of significant has to be discovered several times before it accepted
as “discovered.” The first one to discover the analytical solution was Briggs, J. after
8 years after the challenge was issued. Six years later, for the second time it was
rediscovered by Mascitti, V.R. The emergence of the new mathematical approximation
tools had “buried” these two solutions for the next thirty years. And countless thesis’s
using small perturbation, artificial viscosity, etc were implemented to solve this problem.
However, the “hand waving” presentation in classes daunted the scientific community
and the solution was rediscovered again by Wolf, T., (1993). And of course that was

391
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not enough it has to rediscovered by George Emanuel, (2000).

At this stage, the information about the discovery had some penetration into the
field and it started to appear in another book Anderson’s book. However, examination
of many books since that date shows that the rest of the authors were not aware of the
analytical solution. For example, every popular books published in this millennium show
no reference to any of analytical solutions. In fact, one can not be sure that no another
analytical solution published somewhere else. It is interesting that the authors of all
these variations solutions believed and emphasize the usage of the analytical expression
to obtain the numerical value of the solution. None of them saw the real importance
of the studies the limits of the solution or when it is applicable.

Again, in early 2003 Bar-Meir rediscovered the solution. However, there was a
twist to the way the solution was presented. As oppose to the previous authors presented
their solution only in academic publication, this time the solution was published in an
open content publication. In this open content publication, a dialog between the author
and his readership was very strong as opposite to “committee” (peer reviewers) that
approved all the other publications. The difference between the two publication methods
turned out to be astounding. Numerous people attacked, criticized, scrutinized, and
enhanced and the solution (even the author). As result, the solution was enhanced from
version 0.3x of the book to current version 0.4.4.2

The difference of Bar-Meir’s solution to all the previous solutions is not that
there is any different numerical solutions. This difference is in the importance of bet-
ter understanding of the physical phenomenon and its limits. Now the boundaries of
the oblique shock model can be explained without resulting into “hand waving.” For
example, the detach shock wave can be explained why there is detached shock with
having, the students scratching their heads. More importunately something that was
a puzzle before can be explained. The oblique shock occurs when the inclination is
possible.However, what happened when the inclination plane is zero or even negative.
No one really solved this issue even though numerous works were carried assuming that
there is a solution. Bar-Meir’s solution was able to demonstrate that no oblique shock
can occur when the inclination is zero, by default voiding the significance the numerous
Ph.D’s thesis.

The interesting the part of Bar-Meir’s solution is that was never published in
any scientific paper and yet was read by numerous practitioners and students in the
field. Thus, rediscovering the analytical solution to oblique shock will be now like
rediscovering the calculus. The power of the distribution of the information via the
open content is much faster and wider than the regular academic publication system.
Another important part of the way the material was published is who learn about it
first. In the tradition publication the establishment like old professors who are acting
as the reviewers learn about new information first. Later, they pass this information to
the rest of the community especially to the students. In the new system, the students
and many practitioners in the field know about it long before the establishment even
aware that a new idea has brought to forefront.

Thus, the open content process moves the power of knowledge into the mass
and remove the continuous rediscovering, so that improving and enhancing the solution
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be carried out right way.

1. Briggs, J. “Comment on Calculation of Oblique shock waves,” AIAA Journal Vol
2, No 5 p. 974, 1963.

2. Mascitti, V.R. “A close-Form Solution to Oblique Shock-Wave Properties,” J.
Aircraft 6, 66 (1969) “A close-Form Solution to Oblique Shock-Wave

3. Wolf, T., “Comment on ‘Approximate Formula of Weak Oblique shock wave
angle,” AIAA J. 31, 1363 (1993).

4. George Emanuel, analytical fluid dynamics, crc press (2000)
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Subjects Index

A
Absolute viscosity, 40
absolute viscosity, 41
adiabatic nozzle, 90
airbag, 304
angle of attack, 381

B
Balloon Problem, 315
Bar-Meir’s solution to Oblique shock, 8
Bernoulli’s equation, 68
bulk modulus, 41

C
Carnot cycle, 182
chamber controlled volume, 319
classifications of chambers, 304
Compressibility problem, 13
converging–diverging nozzle, 85
Critical Mach number, 13

D
d’Alembert’s Paradox, 380
Darcy friction factor, 226
de Laval, Carl Gustaf Patrik, 9
deflection angle, 330
deflection angle range, 347
deLavel’s nozzle, see de Laval, Garl Gustaf

Patrik
Density, 40

definition, 40
detached shock, 352
diffuser efficiency, 210
discontinuity, 1
Driven Section, 170
Driver section, 170

E
Eckert number, 10
Emanuel’s partial solution to oblique shock,

8
Expansion section, 170

External flow, 12

F
Fanning Friction factor, 226
fanno

second law, 247
Fanno flow, 12

Maximum length, 261
fanno flow, 245, 4fL

D 249
choking, 250
average friction factor, 251
entrance Mach number calculations,

260, 279
entropy, 250
shockless, 258, 259
star condition, 253

Fanno flow trends, 250
Fliegner, 3
Fliegner experiment, 9
Fliegner number, 99, 217
Fourier law, 56
friction factor, 12

G
Gibbs function, 72
gravity, 221

H
Hydraulic Jump, see discontinuity

I
Impulse function, 119
internal energy, 5
intersection of Fanno and Rayleigh lines,

7
Isothermal Flow, 2, 3, see Shapiro flow

Reynolds Number Effect, 241
isothermal flow, 225

entrance issues, 231
entrance length limitation, 231
maximum 4fL

D , 230
table, 235
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K
Kutta-Joukowski circulation theory, 13

L
Lanchester–Prandtl theory, 13
large deflection angle, 337
Leibniz integral rule, 48
line of characteristic, 377
Long pipe flow, 225

M
Mach, 3
Mach angle, 84
Mach cone, 84
Mach’s bullet, 6, 15
maximum deflection angle, 340
maximum turning angle, 379
Maxwell’s coefficient, 4
Meyer, Theodor, 20
Momentum Conservation, 52
Moody diagram, 12
Moving diaphragm, 182
moving shock, 9

piston velocity, 151
solution for closed valve, 148
stagnation temperature, 144

N
NACA 1135, 8, 331
negative deflection angle, 330
normal components, 332
Normal Shock

Solution, 136
nozzle efficiency, 209

O
Oblique shock, 329

stability, 370
oblique shock

conditions for solution, 335
normal shock, 329
Prandtl–Meyer function, 329

oblique shock governing equations, 333
Oblique shock history, 391
Oblique shock stability, 8

opening valve problem, 193
Over–expanded nozzle, 204
Ozer number, 11

P
Partially open value, 160
perpendicular components, 332
piston velocity, 151
Prandtl-Meyer flow, 373
Prandtl-Meyer function

small angle, 373
tangential velocity, 376

Pressure potential, 182
Pressure potentional

vacuum, 33
Pushka equation, 77

R
Rayleigh Flow, 11

negative friction, 289
Rayleigh flow, 9, 289

second law, 292
tables, 293
two maximums, 291

rayleigh flow, 289
entrance Mach number, 300

Real gas
Isentropic relationships, 129

Reynolds Transport Theorem, 47
Rigid tank nozzle, 309
Romer, see isothermal nozzle

S
science disputes, 5
semi rigid chamber, 304
semi–rigid tank

limits, 305
Shapiro Flow, 3
Shapiro flow, 12
Shapiro, Ascher, 22
Shock angle, 334
shock drag, see wave drag
Shock in cylindrical coordinates, 157
Shock in spherical coordinates, 157
Shock Tube
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Thermodynamics, 182
shock tube, 169
shock wave, 131

perturbation, 140
star velocity, 138
table

basic, 195
thickness, 141
trivial solution, 136

small deflection angles, 350
sonic transition, 94
Speed of sound

real gases, 72
speed of sound, 4

ideal gas, 69
linear temperature, 71
liquid, 76
solid, 80
star, 89
steam table, 71
two phase, 81

speed of sound, what, 68
stagnation state, 85
Star conditions, 138
strong solution, 336
supersonic tunnel, 211

T
table

shock choking, 157
shock wave

partial close valve, 166
Taylor–Maccoll flow, 8, 350
Thermodynamical pressure, 65
Thin-airfoil theory, 13
throat area, 94

U
Under–expanded nozzle, 204
Upsteam Mach number, 345

V
Velocity–temperature diagram, 35
Viscosity, 40
Von Karman integral equation, 23

von Neumann paradox, 329

W
weak solution, 336

Y
Young’s Modulus, 81

Z
zero deflection angle, 344
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